

The Greater Manchester Emissions Inventory 2007 Update

HFAS Report 1679 October 2011

Summary

This report describes the 2007 update of the atmospheric **em**issions inventory for **G**reater **Ma**nchester, EMIGMA. The 2007 database continues with the revised methods and procedures for collecting and calculating the emissions introduced for the 2005 update for most sources. As part of the continuous improvement of the EMIGMA inventory a web-based system has been developed to collect the Part A and B processes data.

HFAS Report 1679

October 2011

This page is intentionally blank.

Contents

1.	Introd	uction	4
2.	The 2	007 Update	5
3.	Metho	odology for the 2007 Update	6
	3.1	Road Sources	6
	3.1.1	The Major Roads Update	
	3.1.2	Minor Roads Emissions	
	3.1.3	Hot Soaks	14
	3.1.4	Cold Starts	15
	3.2	Point Sources	
	3.3	Rail Sources	
	3.4	Bus Stations	
	3.5	Domestic and Commercial Combustion	
	3.5.1	Domestic Combustion	
	3.5.2	Commercial Combustion	
	3.6	Electricity Generation	
	3.7	Aviation	
	3.8	Area Sources	24
4.	Resul	ts of the 2007 Update	25
	4.1	Road Transport	25
	4.2	Point Sources	
	4.3	Rail Sources	31
	4.4	Bus Stations	
	4.5	Domestic and Commercial Combustion	
	4.5.1	Domestic Combustion	
	4.5.2	Commercial Combustion	
	4.6	Electricity Generation	
	4.7	Aviation	
	4.8	Area Sources	
	4.9	Total Emissions	34
5.	Refer	ences	57
Αı	ppendice	98	59
	 Appendix	1 Maps of emissions from all sources	60
	Appendix		
	Appendix	6 Emission Factors for Rail	96
	Appendix		
	Appendix	8 Sample from the Emission Factor Handbook and Workbook	100

1. Introduction

The original EMIGMA database was compiled by the London Research Centre (LRC) and RSK Radian on behalf of the Department of the Environment, Transport and the Regions (DETR) Air and Environment Quality Research Programme. Released in June 1997, it represents the second of a series of atmospheric emissions inventories covering many of the UK's major urban and industrial zones (Buckingham et al, 1997).

The emissions inventory contains information on the emissions of pollutants identified in the UK's Air Quality Strategy from all identifiable sources in the area. The emissions sources are grouped into three broad categories:

- stationary point sources predominantly industrial processes
- mobile line sources road, rail and air transportation
- area sources other influential sources, such as domestic emissions, which it is not practical to resolve to point or line representations but which are nevertheless collectively significant. These sources are essentially population based and include, for example, combustion and solvent usage related emissions from domestic houses. They also include hot soaks vehicle emissions, which are based on estimates of vehicle destinations in each of 864 transport model zones making up Greater Manchester.

The emissions are then aggregated to a 1km² grid covering Greater Manchester. Highways Forecasting and Analytical Services (HFAS)¹ was commissioned on behalf of the Greater Manchester Local Authorities to undertake an update of the EMIGMA emissions inventory for a base year of 2007. This is the eleventh year of updates. The updates prior to 2004 were undertaken by the Centre for Air Transport and the Environment (CATE), formerly called ARIC.

The 2007 EMIGMA database covers an area of 1272 km² encompassing the ten administrative districts of Greater Manchester.

The database allows the magnitude and spatial distribution of emissions across Greater Manchester to be investigated and enables the relative importance of different sources of air pollution to be examined. The emissions data has a further role in providing the basis for dispersion modelling exercises and air quality management planning. In conjunction with transport models it also provides the basis for forecasting air quality and determining the effects of changes in land use planning and transportation policies on mass emissions.

Accompanying this report is a set of data and Geographical Information System (GIS) files showing emissions broken down by individual 1km grid squares. See Appendix 7 for details.

¹ On 1st April 2011 the Greater Manchester Transportation Unit (GMTU) became part of Transport for

2. The 2007 Update

Following the handover of responsibility for updating EMIGMA from CATE to HFAS the methodology employed in creating the emissions inventory was reviewed. The industrial Part A and Part B processes² form a major component of the EMIGMA database. As the documentation from the previous EMIGMA updates was limited and HFAS do not have much expertise in this area the update of the Part A and the Part B processes was contracted to Royal Haskoning. Royal Haskoning categorised the processes using a similar system to the Source Categorisation Codes used by the EMEP/Corinair atmospheric emission inventories. Royal Haskoning produced a series of Microsoft Excel templates for the 2005 update. For the 2006 update HFAS have used these templates as the basis for a series of web-based forms which can be used by Districts to enter the point source data.

A number of tasks have been carried out by HFAS for the 2007 update in relation to the maintenance, improvement and update of the Greater Manchester emissions inventory

- update of the part A and part B emission factors from the NAEI data warehouse (NAEI, Reference 14)
- update and recalculation of domestic and commercial combustion emissions;
- update and recalculation of bus stations emissions
- update and recalculation of rail emissions
- update of airport related emissions
- update and recalculation of point sources emissions
- update and recalculation of major roads emissions
- · update and recalculation of minor roads emissions
- · update and recalculation of hot soaks emissions
- update and recalculation of cold starts emissions
- update of CO₂ from electricity generation at the point of use
- the inclusion of emissions from City Airport Manchester (formerly Barton Aerodrome)
- an update of the inventory for 2007

This report gives details of the maintenance and update activities that have been undertaken by HFAS and presents the results of the 2007 EMIGMA update.

² These are the main polluting industries in the UK, prescribed under the Pollution Prevention and Control (PPC) regime as either A1, A2 or B activities.

3. Methodology for the 2007 Update

3.1 Road Sources

Road traffic emissions have been estimated using emission factors from the National Atmospheric Emissions Inventory website, in association with traffic speed and flow data from the Greater Manchester Saturn model.

Separate estimates of vehicle emissions were calculated for:

- Major Roads representing warm running emissions from vehicles traveling on major roads represented in the Saturn model
- Minor Roads representing warm running emissions from vehicles traveling on local roads that are not represented in the Saturn model
- Cold Starts representing extra emissions caused by cold-running engines at the start of each journey
- Hot soaks (evaporative emissions) representing extra emissions emanating from a hot engine after switching off at the end of each journey.

The calculation of the road traffic emissions is described in the remainder of this section. The section is organised as follows. Section 3.1.1 describes the major roads update. The calculation of the minor road emissions is described in Section 3.1.2. The calculation of the hot soak emissions is described in Section 3.1.3. Section 3.1.4 describes how cold start emissions were estimated. The references are contained in Section 5. The emission factors and road traffic expansion factors are shown in Appendix 2.

3.1.1 The Major Roads Update

3.1.1.1 Description of the Traffic Model

The major roads update made use of traffic speed and flow data from the 2007 Greater Manchester SATURN Model, (GMSM, Reference 1), which covers all of Greater Manchester and the surrounding area.

The model has two main components comprising:

- The highway networks, which represent the roads and junctions used by traffic and bus services
- The trip matrices, which represent the demand for travel and the flow of vehicles between the zones in the model.

The highway networks that are used with the model represent all roads of traffic significance within the Greater Manchester, including all motorways, A roads and B roads. The networks also include all of the yellow coloured roads on the Ordnance Survey's Landranger maps of the area, and all roads carrying known bus services. The network outside the county is represented in much less detail, and becomes increasingly less dense with increasing distance from the county boundary.

The highway network within Greater Manchester is coded in full Saturn 'simulation' format, and includes detailed junction data including, for example, information about

permitted turning movements, lane usage (including the locations of bus lanes) and details of traffic signal settings. This allows the interaction of traffic at junctions and the resulting delays and queues to be accurately modelled. Outside the county, the network is coded in Saturn 'buffer' format. The roads in this part of the model are represented in less detail than in the simulation network, and only include information about the roads as opposed to the junctions.

The modelled area is split into 993 zones, comprising 864 zones within Greater Manchester and 129 zones outside the county. The zones inside the county are the most detailed, formed by splitting local authority wards into areas with similar trip making characteristics. (The outputs from the model can, therefore, be aggregated to wards and then districts if necessary). The zones outside the county are generally larger, and become increasingly large with increasing distance from the county boundary.

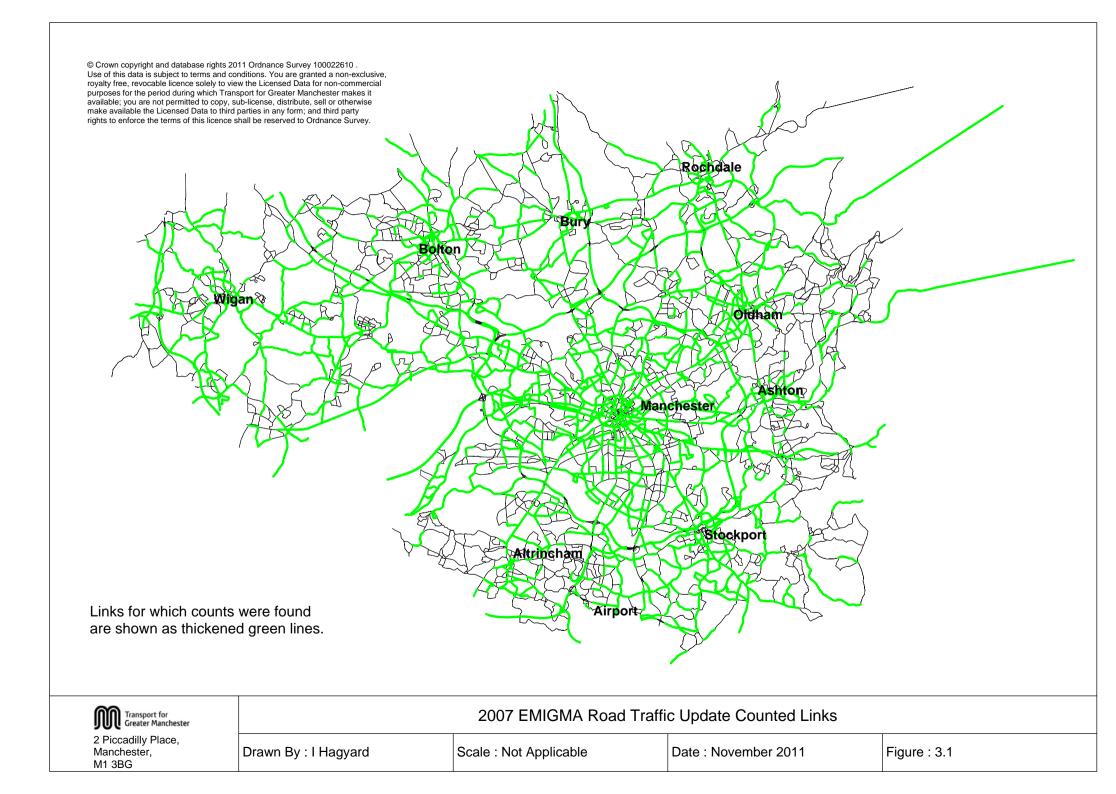
The GMSM trip matrices contain representations of all vehicle trips with an origin or destination inside Greater Manchester, and all external-to-external trips that cross the county boundary. The matrices also include partial representations of other external-to-external trips that do not enter Greater Manchester, but which are required to model the routing of trips into and out of the county.

Separate matrices are maintained for car, Light Goods Vehicle (LGV- goods vehicles up to 3.5 tonnes gross vehicle weight) and Other Goods Vehicle (OGV- goods vehicles over 3.5 tonnes gross vehicle weight) trips, for the morning peak hour (0800-0900), the evening peak hour (1700-1800) and an average inter-peak hour for the period 1000-1530.

For modelling purposes, the separate vehicle matrices are combined to form Passenger Car Unit (PCU) matrices for assignment to the highway networks. Assignment is the name given to the process by which the vehicles travelling between each pair of zones in the model are loaded onto the routes between the zones as determined by the model's routeing algorithm. Buses are not assigned, as they follow fixed routes, but are included in the networks as fixed link loads.

3.1.1.2 Traffic Assignments

Loaded network files for input to the EMIGMA database were created by assigning the separate 2007 PCU vehicle matrices to the highway networks, which were then converged. This is an iterative process, that includes a looped sequence of steps, in which the routes between the zones in the traffic model are determined, the movements between these zones in the trip matrices are loaded onto the network, the network link speeds are re-calculated using the flow-delay relationships within the model, new routes are determined etc. until the traffic flows and link speeds do not change significantly from one iteration to the next.


Once the networks had been converged, the assigned PCU flows for the separate car, LGV and OGV matrices were converted back to vehicles and saved in a format suitable for input to the EMIGMA database using software written by HFAS.

3.1.1.3 Updating the Assigned Flows with Counts

To improve the accuracy of the road traffic emission estimates, the modelled flows from the converged highway networks were replaced with traffic counts from HFAS's COUNTS database (Reference 2), for all roads where counts were available. This involved checking the count data and identifying all car, LGV, OGV and bus counts undertaken on the roads represented in the Saturn model between 1 January 2004 and the present day.

The 1st January 2004 was chosen for the earliest count date to exclude older counts that might be unreliable due to changes in travel patterns and traffic flows over time. In total, counts were found for approximately 41 percent of the links in the network, representing 43 percent of the network mileage. Most of these were on the busier links, which produce the largest volumes of emissions, as shown in Figure 3.1.

The GMSM models traffic flows on a typical weekday, assumed to be an October average weekday. When more than one count was available for a link, therefore, the count undertaken closest in time to 1st October 2007 was chosen. The selected counts were then factored to the 2007 October average weekday using count conversion factors developed by HFAS, (Reference 4), and were then copied onto the modelling networks. Finally, the network link speeds were made compatible with the counted link flows using the flow-delay relationships from the traffic model, prior to copying the networks into the EMIGMA database.

3.1.1.4 Bus Speed Factors

The EMIGMA database includes a procedure for applying bus-speed adjustment factors, to allow link speeds for buses to be reduced, to take into account the fact that buses stop more frequently and travel more slowly than other road vehicles.

The 2007 bus-speed factors were estimated by comparing observed bus and car journey times on equivalent routes in HFAS's road traffic journey time databases GMTimes and GMBusTimes (Reference 5). The calculated factors are shown in Table 3.1.

3.1.1.5 Emission Estimates

Separate estimates of traffic emissions were derived for the following eight pollutants:

- VOCs
- CO
- CO₂
- NO_X
- SO₂
- Benzene
- 1,3 Butadiene
- PM₁₀

Forecasts were produced by vehicle type and time period for each link in the highway network using:

- the link length
- the link flow by vehicle type (cars, LGVs, OGVs, buses, motorcycles)
- the link speed
- a table describing the composition of the vehicle fleet in terms of vehicle type, emission standard and method of propulsion
- a table giving emission factors by 5 kph speed band

Information about the fleet composition was obtained from three sources:

- the National Atmospheric Emissions Inventory (NAEI) fleet composition projections, (Reference 7), which provide details of the percentage of vehicles complying with different emission standards
- the DTLR's publication, Transport Statistics Great Britain 2007 Edition, (Reference 8), which provides details of the petrol/diesel car/LGV split
- GMTU Report 1387, Transport Statistics Greater Manchester 2007, (Reference 9), which provides details of the percentage of rigid/articulated HGVs by road type

The emission factors were calculated by combining the fleet composition projections with speed emission coefficients from the NAEI website (Reference 14). The

calculated factors are shown in Table A2.1-Table A2.8 of Appendix 2. The fleet composition data are shown in Table A2.9.

The emission totals for the modelled hours were expanded to annual totals using the hour-to-period and period-to-day factors shown in Table A2.10. The calculated totals for all road sources are shown in Table 4.1 and for major roads only in Table 4.2, broken down by road type.

Table 4.3 and Table 4.4 present motorway emissions and Table 4.5 presents all major roads emissions broken down by vehicle type. Table 4.6 presents the results broken down by District. Modelled annual vehicle kilometre totals on motorways and other roads are shown in Table 3.2 and Table 3.3. GMTU Report 1387 (Reference 9) contains more detailed information on traffic flows and traffic growth.

Table 3.1

2007 Bus Speed Adjustment Factors							
Time Period	Factor						
AM Peak Period	0.707						
Off-Peak Period	0.667						
PM Peak Period	0.765						

Notes

These factors are used to adjust bus speeds, to take into account that buses stop more frequently and travel more slowly than other road vehicles. For example, if a link has a modelled link speed of 20 kph and the bus speed factor is set equal to 0.75, it is assumed that cars, LGVs and OGVs travel at 20 kph along the link, whilst buses travel at 20*0.75 = 15 kph.

Table 3.2

Modelled 2007 Vehicle Kilometres on Motorways by District										
	Annual Vehicle Kilometres (Millions)									
District	Car	LGV	OGV	Bus	All Motors					
Bolton	426	87	55	1	571					
Bury	537	130	101	2	771					
Manchester	506	87	52	1	649					
Oldham	131	33	18	0	183					
Rochdale	567	131	132	2	834					
Salford	768	156	143	1	1,071					
Stockport	349	70	42	1	463					
Tameside	283	60	36	1	380					
Trafford	323	59	36	0	421					
Wigan	396	73	74	2	547					
Total	4,286	885	689	12	5,889					

The all motors figures include motorcycles.

Table 3.3

Modelled 2007 Vehicle Kilometres on Other Major Roads by District										
	Annual Vehicle Kilometres (Millions)									
District	Car	LGV	OGV	Bus	All Motors					
Bolton	883	147	39	16	1,091					
Bury	511	76	19	9	618					
Manchester	1,337	193	51	41	1,632					
Oldham	590	96	29	12	731					
Rochdale	562	91	26	10	693					
Salford	701	124	40	13	883					
Stockport	921	134	37	13	1,112					
Tameside	527	93	30	10	664					
Trafford	670	98	28	9	811					
Wigan	941	164	55	18	1,186					
Total	7,643	1,216	355	151	9,421					

The all motors figures include motorcycles.

3.1.2 Minor Roads Emissions

Minor roads emissions are calculated separately from emissions on major roads, as minor road traffic flows are not available from the GMSM. Instead, emissions on minor roads are calculated using a traffic modelling procedure that makes use of SATURN buffer networks built from information held in the Integrated Transport Network layer (ITN) of the Ordnance Survey's MasterMap system, and isolated trip matrices formed using trip end totals from the trip matrices used with the GMSM (Reference 11).

Full details of the procedure are given in Reference 11. Briefly, however, the process involves building separate SATURN buffer networks from data held in the ITN for each of the 864 zones within Greater Manchester that are represented in the Saturn model. Any roads in the ITN that are also represented in the GMSM network are then discarded, to leave networks that only contain 'minor' roads that are not represented in the countywide model.

Next, centroid connector links, (themselves attached to zones), are coded into each of the ITN minor road networks, so that trips that end in the associated GMSM zone can be loaded onto the network at the points representing junctions of major roads with minor roads, and can be taken off the network at points representing junctions of minor roads with other minor roads, or the terminal points of minor roads. The trips

that begin in the GMSM zone are loaded onto the minor road network at the minor road junctions and are taken off the network at the major road junctions, where the minor road network provides access to the major road links represented in the Saturn model. This procedure is reversed for trips that destinate in the GMSM zone.

The assignment matrices that are used with the procedure are formed using trip end totals from the GMSM trip matrices, giving the total number vehicle trips that begin and end in each of the zones represented in the Saturn model.

For each GMSM zone and minor road network in turn, the trips that end in the zone are split equally between the coded internal zones representing the minor road junctions, so that an equal number of trips are taken off the network at each of these points. The origins of these external to internal trips are coded to a single (external) zone representing the major road junctions, (which are coded into the network using multiple centroid connector links), so that the assignment model determines the precise number of trips that are loaded onto the minor road network at each point providing access from the major road system.

A similar approach is adopted for distributing the internal to external trips that begin in the GMSM zones, although in this case the trips that begin in the zones are split equally between the internal minor road zones, so that equal numbers of trips join the minor road network at each of the minor road junctions. All of the trip destinations are coded to the external zone representing the major road junctions, so that the assignment model determines the number trips that leave the minor road network at each of the junctions that provide access to the major road system.

Separate matrices are formed for car, LGV and OGV trips, for each of the three time periods represented by the GMSM. The matrices are assigned to the highway network and the network converged, to provide estimates of traffic speeds and flows on each of the roads represented in the network. The assigned flows are then processed in a similar way to that described for major roads, using the fleet composition, road traffic expansion and speed related emission factors shown in Appendix 2 to calculate annual emission totals for each link.

The calculated minor road emissions are shown in Table 4.7, broken down by vehicle type. Emission totals by District are shown in Table 4.8.

3.1.3 Hot Soaks

Hot soak (or evaporative) emissions are the emissions that result when a hot engine is turned off. Heat from the engine and exhaust system increases the temperature of the fuel in the system that is no longer flowing. Carburettor float bowls are particularly significant source of hot soak emissions.

Hot soak emissions were estimated for cars and LGVs by applying vehicle specific emission factors to trip end totals calculated from the GMSM.

Hourly trip end estimates for petrol and diesel powered vehicles were then estimated using the fleet composition data shown in Table A2.9 of Appendix 2.

The fleet-weighted 2007 hot soak emission factors were obtained from the NAEI

website (Reference 14), as shown in Table A2.12.

The factors were used to calculate emission totals by hour, which were then expanded to give annual totals using the expansion factors shown in Table A2.10. The calculated totals are shown in Table 4.9, broken down by vehicle type.

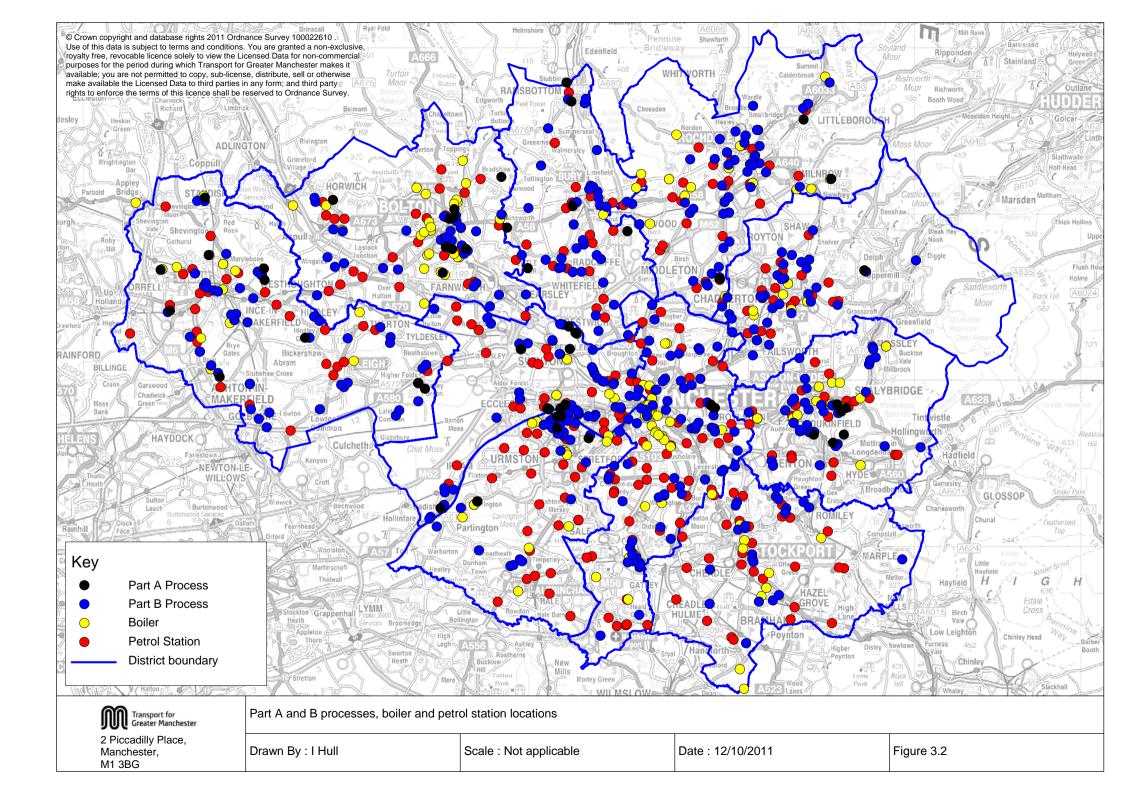
3.1.4 Cold Starts

Cold start emissions represent the additional emissions produced by vehicles until they reach their normal operating temperature.

These emissions have been estimated using cold start emission factors (per trip values) from the NAEI website for petrol and diesel cars and LGVS, as shown in Table A2.11. The lack of emission factors for other vehicle types, including OGVs and buses, implies that these vehicles never or rarely experience cold starts. For the majority of such vehicles this is likely to be true, since engines cool slowly and commercial vehicles are used more intensively than cars and light vans. Furthermore, these vehicle types form only a small part of the total vehicle fleet and the relatively small numbers of journeys they make are considerably longer than those made by cars and LGVs.

In earlier versions of the EMIGMA database, all cold start emissions were assumed to arise at the trip's origin zone centroid, which were then allocated to 1km² grid squares along with the link based major and minor roads emissions described earlier. In practice, however, for most vehicles, their cold start emissions will be spread over the links they traverse until the engine is warm and, in many cases, the majority of these emissions will occur outside the origin zone.

The development of GMSM presented an opportunity to improve the modelling of cold start emissions by making use of a traffic assignment procedure to allow emissions to be allocated to links in the major road network. The procedure uses a traffic assignment option within Saturn that allows trips to be assigned for only part of their routes, defined in terms of distance from their origins. It is possible, therefore, to model the first n metres of a vehicle's journey, when the engine is still cold. (Our current best estimate of the distance travelled with a cold engine is 1,932m, as described in Reference 12). The modelling procedure correctly accounts for the situation where the nth metre is reached mid-link by loading only a proportion of the trip on the link. For example, if the nth metre point occurs halfway along a link then only half a trip is loaded on to the link. Full details of the procedure are given in Reference 13.


The cold start emissions were estimated for each of the modelled hours and vehicle types represented by the Saturn model, and were then expanded to give annual totals using the expansion factors shown in Table A2.10. The calculated cold start emissions are shown in Table 4.9, broken down by vehicle type. Cold start emissions by District are shown in Table 4.10.

3.2 Point Sources

The method for collecting, storing and calculating emissions from point source data was completely revised for the 2005 EMIGMA update. Royal Haskoning were commissioned to review the current procedures for calculating industrial emissions and to develop a new system based on traceable and verifiable emission factors. They produced a series of Excel templates, one for each process, and an accompanying handbook (Reference 19). The handbook describes the activities, emissions, emission factors and source of the emission factors for each process. The templates prompt the user to enter the relevant activity data e.g. the amount of output produced as opposed to the amount of input material. The factors are embedded in the templates so the calculated emissions are displayed and can be checked when the activity data is entered. A system for rating the data quality and reliability of both the generic emission factors and the specific industry activity information was introduced, in order to derive a qualitative system for scaling the overall uncertainty. This in turn can be used in future updates to prioritise efforts and resources towards improving the data with the greatest uncertainties. More details can be found in Royal Haskonings final report (Reference 20) and a sample from the handbook and corresponding template can be found in Appendix 8.

Building on the work done by Royal Haskoning, these templates were used as a basis for a web-based data entry system. The new system allows the user to enter and check new sites and processes online from any location. The system has a mapping element that enables the user to locate the site on a map and automatically generate an accurate grid reference. The system administrator can see the current progress of data entry for each district and can add and amend factors and processes, which become immediately available to the user.

Figure 3.2 shows the locations of all of the point source data.

3.3 Rail Sources

The rail data for 2007 has been updated for the first time since 2003. Train movement data was obtained from Network Rail from the ACTRAFF database for the ACTRAFF period 177 (14th October 2007 to 10th November 2007). ACTRAFF is a database recording the actual traffic movement across the rail network. The data contains the number of movements on each section of track broken down by traction class - locomotives and diesel multiple units (DMU's). Electric multiple units were also included but were not included in the calculations as the electricity data has already been included in section 3.6. The data also included a comprehensive breakdown on the number of wagons, but this data was not used in the emissions calculations as the emissions factors assume an 'average' load.

The first step was to draw the rail network in our geographic information system (GIS) broken down by the each of the 586 sections listed in the ACTRAFF data. Factors were obtained from the Rail Emission Model report on the DfT website (Reference 22). The factors are shown in Table A6.1. The 52 train classes from the ACTRAFF data were then allocated the most appropriate factor. The number of movements were factored to 52 weeks and then had the emission factors applied. The emissions were then allocated to the GIS network.

As the emissions factors incorporate an assumed station spacing the calculated emissions on the rail track now contain the emissions at stations, so the station emissions are no longer required.

3.4 Bus Stations

An updated bus station usage file was obtained from the TfGM. The file was based on bus station data for September 2008 and had weekdays, Saturdays and Sundays listed separately. This was more accurate than previous estimates where a typical weekday was factored by 365. It was assumed that bank holidays would be equivalent to Sunday services and that each bus would idle for 5 minutes at the bus station (this is the maximum time that is theoretically allowed). Updated emission factors were then applied for the lowest speed band (i.e. 5km/hr) and emissions calculated. The emission factors from the road update were used, which were obtained from the NAEI website (Reference 14) and are shown in Table A2.8.

3.5 Domestic and Commercial Combustion

The domestic and commercial combustion emissions were both updated and recalculated. A file of 2007 domestic and commercial gas usage broken down by Middle Layer Super Output Area (MSOA) was obtained from the Department for Energy and Climate Change (DECC), Reference 17 (previously from the Department for Business Innovation and Skills, BIS, and prior to that Department for Business Enterprise and Regulatory Reform, BERR). This section describes how the combustion figures were updated.

3.5.1 Domestic Combustion

3.5.1.1 Gas Combustion

Mid-Year Population Estimates for 2007 were obtained from the Office for National Statistics (ONS) at Lower Layer Super Output Area (LSOA) level. The gas consumption data at MSOA was then weighted by the (varying) population densities at LSOA level. The gas consumption data, now at LSOA level, was then disaggregated across the 1km² grid.

The emission factors were obtained from the NAEI website (Reference 14) and are shown in Table A3.1.

3.5.1.2 Non-Gas Combustion

Non-gas fuel use was obtained at local authority level from the DECC website (Reference 15). The data is given in tonnes of oil equivalent (toe) which was then converted to kWh using the factor 1 toe=11630 kWh, from the Digest of United Kingdom Energy Statistics 2008 (DUKES 2008) (Reference 18). The kWh values were then converted to Megatonnes using a calorific value for coke from DUKES 2008. The appropriate emissions factors, shown in Table A3.2, were obtained from the NAEI website (Reference 14) and applied. The emissions were spread equally between the MSOA's rather than weighted by population because it was thought that solid fuel use does not directly correlate to population density.

The domestic emissions for oil combustion were calculated in an identical method to the solid fuel. The emission factors used are given in Table A3.3.

3.5.2 Commercial Combustion

3.5.2.1 Gas Combustion

The 2001 Census Origin-Destination Statistics data give the home to workplace trips for the entire of the UK. Using this we were able to estimate the number of people working in each MSOA.

Part A, Part B and boiler gas consumption estimates from the point source data input to the website by the Districts was removed from the relevant DECC MSOA commercial gas delivery figures to avoid double counting. However, in 17 MSOAs the total gas use by the point sources (Part A processes etc.) was more than that

given in the data from DECC. There could be a number of reasons for this. In some cases upto 1.24% of the gas consumption was unallocated at the local authority level. This gas was allocated between the MSOAs for that district pro rata to the gas usage in each MSOA. However, the gas could have been consumed in just one or two of the MSOAs within that district. Also the gas data returned by the District officers could be incorrect or there could be differences in location between where the gas is metered and where it is used. Where the process data is greater than the DECC data the gas usage in that MSOA was reset to 0. This is the method used in previous EMIGMA updates. The adjusted data was then processed in the same way as the domestic gas consumption but using people working, rather than the population, in output areas to estimate commercial consumption for the 1km² grid.

The emission factors were obtained from the NAEI website (Reference 14) and are shown in Table A3.4.

3.5.2.2 Non-Gas Combustion

As in previous updates the oil and solid fuel emissions were not estimated for commercial/industrial usage as it was thought (jointly by the Greater Manchester Authorities) that these would be covered, in the majority, by the boiler emissions.

3.6 Electricity Generation

The CO₂ emissions from electricity generation have been calculated as if they arose at the point of use rather than at the power station. Note that there are no power stations within Greater Manchester. Electricity consumption data for 2007 at Middle Layer Super Output Area (MSOA) was obtained from the Department for Energy and Climate Change (DECC), Reference 17. The domestic electricity consumption figures were disaggregated by the census population figures used for the domestic gas use (see section 3.5.1.1). The commercial and industrial electricity consumption figures were disaggregated by the workplace population (see section 3.5.2.1). The CO₂ produced during generation was calculated using the value of 137 tonnes of carbon per GWh of electricity supplied. This factor was obtained from DUKES 2008 (Reference 18) and is a composite factor for all sources of electricity generation including nuclear and renewables.

3.7 Aviation

Data for 2007 was supplied by Chris Paling, Manchester Airport plc. The data includes ground based aircraft movements and movements up to an altitude of 200m. The data also contains vehicle movements off the public highway including airside traffic. This data has been aggregated to the 1km grid. The emissions, broken down by activity, are available in the accompanying data in the file "Manchester Airport 2007 Data.xls". Table 3.4 gives the passenger numbers and annual traffic movements for comparison with previous years.

Table 3.4

Passenger Numbers and Annual Traffic Movements (ATMS)									
Year	Passengers	ATMS							
2003	19,901,403	207,037							
2004	21,555,600	205,700							
2005	22,106,335	234,794							
2006	22,776,337	229,717							
2007	22,362,106	222,670							

Data for 2007 has also been supplied by Nick Duriez, City Airport Manchester Ltd (Manchester Barton). City airport is business and general aviation airfield for light aircraft and helicopters. The data contains the number of movements and circuits broken down by aircraft weight categories. This is available in the accompanying data in the file "City Airport 2007 Data.xls". Factors were obtained from Federal Office of Civil Aviation, FOCA, the Swiss aviation authority website (Reference 21) and are shown in Table A4.1. The factors used are the recommended factors for emission inventories and try to take a representative mixture between LTO (Landing and Take-Off), circuit flying and the variation in performance between different aircraft. The factors give the emissions from the aircraft until they reach cruise altitude, which is assumed to be 3000ft or 1500ft for circuit flying.

Aviation emissions are shown in Table 4.17.

3.8 Area Sources

The area source data has not been updated from the 2006 update. The rest of this section is a summary of how the livestock data was updated previously.

Data from DEFRA was obtained on the numbers of livestock by a 5km grid for 2004. The Ordnance Survey's (Meridian 2) developed land use area boundary file was used to exclude built up areas from the 1km squares within Greater Manchester. The emissions for each 5km square were calculated using emission factors from the EMEP/CORINAIR Emission Inventory Guide book – 2006 (Reference 16), which are shown in Table A5.1. The emissions for each 5km square were then divided equally between the non-developed areas.

4. Results of the 2007 Update

A summary of some of the results of the 2007 update are shown in this section. More information can be obtained from the data held in the GIS tables in the accompanying data.

4.1 Road Transport

Table 4.1 shows a summary of the emissions by all road sources. Table 4.2 to Table 4.6 show the results of the major road emissions broken down road type, vehicle type and District. Table 4.7 and Table 4.8 show the minor road emissions broken down by vehicle type and District. Table 4.9 shows the emissions from cold starts and hot soaks.

Table 4.1

2007 Road Transport Sources (Tonnes/Year)											
Pollutant	Motorways	Other Major Roads	Minor Roads	Hot Soaks	Cold Starts	Total					
VOCs	798	1627	99	755	1583	4862					
CO	5163	12228	722		19293	37406					
CO ₂ as C	483233	578682	35316			1097231					
NO _X	7226	6437	349		1366	15378					
SO ₂	42	56	4			102					
Benzene	9	31	2	2	65	109					
1,3 Butadiene	17	26	1		11	55					
PM ₁₀	544	718	48		83	1393					

Notes

Table 4.2

2007 Major Road Emission Totals by Road Type (Tonnes/Year)											
Pollutant	Motorways	Other Major Roads	Total								
VOCs	798	1627	2425								
CO	5163	12228	17391								
CO ₂ as C	483233	578682	1061915								
NO _X	7226	6437	13663								
SO ₂	42	56	98								
Benzene	9	31	40								
1,3 Butadiene	17	26	43								
PM ₁₀	544	718	1262								

The sum of the columns may not equal the total due to rounding.

Table 4.3

2007 Motorway Emission Totals by Vehicle Type (Tonnes/Year)										
	Vehicle Type									
Pollutant	Motor Cycles	Cars	LGVs	OGVs	Buses	Total				
VOCs	15	314	66	400	3	798				
CO	350	3372	528	903	10	5163				
CO ₂ as C	746	188189	60833	231509	1957	483233				
NO _X	6	1587	652	4924	57	7226				
SO ₂	0	24	7	11	0	42				
Benzene	0	7	1	0	0	9				
1,3 Butadiene	0	4	1	12	0	17				
PM ₁₀	3	253	132	155	2	544				

Notes

Table 4.4

2007 Motorway Emission Totals by District (Tonnes/Year)												
		Pollutant										
District	VOCs	СО	CO ₂	NO _X	SO ₂	Ben- zene	1,3 Buta- diene	PM ₁₀				
Bolton	67	490	45519	651	4	1	1	53				
Bury	110	667	64581	994	6	1	2	73				
Manchester	76	552	45507	624	4	1	1	54				
Oldham	24	172	15116	215	1	0	0	18				
Rochdale	129	716	75940	1224	6	1	3	80				
Salford	154	928	91286	1410	8	2	3	100				
Stockport	58	382	32147	454	3	1	1	38				
Tameside	47	348	30852	436	3	1	1	36				
Trafford	56	392	31062	435	3	1	1	36				
Wigan	78	516	51224	783	4	1	2	55				
Total	798	5163	483233	7226	42	9	17	544				

The sum of the rows may not equal the total due to rounding. Totals for CO_2 refer to carbon dioxide as C.

Table 4.5

2007 Major Road Emission Totals by Vehicle Type (Tonnes/Year)										
	Vehicle Type									
Pollutant	Motor Cycles	Cars	LGVs	OGVs	Buses	Total				
VOCs	157	1358	204	619	87	2425				
CO	1096	13400	1231	1404	261	17391				
CO ₂ as C	2720	556503	145283	321541	35867	1061915				
NO _X	16	3809	1526	7182	1131	13663				
SO ₂	0	62	16	15	5	98				
Benzene	5	31	4	0	0	40				
1,3 Butadiene	3	16	2	19	3	43				
PM ₁₀	10	708	277	234	32	1262				

Notes

Table 4.6

2007 Major Road Emission Totals by District (Tonnes/Year)											
	Pollutant										
District	VOCs	со	CO ₂	NOx	SO ₂	Ben- zene	1,3 Buta- diene	PM ₁₀			
Bolton	243	1833	110340	1363	11	4	4	135			
Bury	214	1456	100919	1377	9	3	4	118			
Manchester	388	2910	150810	1808	14	7	6	180			
Oldham	146	1078	59649	725	6	3	2	74			
Rochdale	240	1535	116376	1675	10	3	5	132			
Salford	313	2116	147987	2054	13	5	6	169			
Stockport	252	1887	100173	1168	10	4	4	122			
Tameside	165	1209	72734	920	7	3	3	88			
Trafford	191	1420	78778	938	8	3	3	96			
Wigan	274	1948	124150	1636	11	4	5	146			
Total	2425	17391	1061915	13663	98	40	43	1262			

The sum of the rows may not equal the total due to rounding. Totals for CO_2 refer to carbon dioxide as C.

Table 4.7

2007 Minor Road Emission Totals by Vehicle Type (Tonnes/Year)											
Pollutant	Motor Cycles	Cars	LGVs	OGVs	Buses	Total					
VOCs	11	67	9	12	0	99					
CO	50	610	35	27	0	722					
CO ₂ as C	139	24197	5600	5380	0	35316					
NO _X	1	154	61	133	0	349					
SO ₂	0	3	1	0	0	4					
Benzene	0	1	0	0	0	2					
1,3 Butadiene	0	1	0	0	0	1					
PM ₁₀	1	33	10	5	0	48					

Notes

Table 4.8

2007 Minor Road Emission Totals by District (Tonnes/Year)																
		Pollutant														
District	VOCs	со	CO ₂	NO _X	SO ₂	Ben- zene	1,3 Buta- diene	PM ₁₀								
Bolton	10	73	3543	34	0	0	0	5								
Bury	7	55	2587	24	0	0	0	4								
Manchester	15	107	5237	52	1	0	0	7								
Oldham	7	54	2619	26	0	0	0	4								
Rochdale	9	61	3060	31	0	0	0	4								
Salford	10	71	3535	36	0	0	0	5								
Stockport	14	101	4803	46	1	0	0	7								
Tameside	7	52	2579	26	0	0	0	4								
Trafford	10	73	3538	35	0	0	0	5								
Wigan	11	76	3815	39	0	0	0	5								
Total	99	722	35316	349	4	2	1	48								

The sum of the rows may not equal the total due to rounding. Totals for CO_2 refer to carbon dioxide as C.

Table 4.9

2007 Cold Start and Hot Soak Emission Totals (Tonnes/Year)												
Dollutont	С	old Start	S	Hot Soaks								
Pollutant	Cars	LGVs	Total	Cars	LGVs	Total						
Non-Methane VOCs	1533	50	1583	745	10	755						
CO	18934	358	19293	n/a	n/a	n/a						
NO_X	1306	60	1366	n/a	n/a	n/a						
Benzene	64	1	65	2	0	2						
1,3 Butadiene	10	0	11	n/a	n/a	n/a						
PM ₁₀	31	51	83	n/a	n/a	n/a						

Notes

n/a - not applicable

Table 4.10

2007 Cold Start Emission Totals by District (Tonnes/Year)														
	Pollutant													
District	VOCs CO NO		NO _X	Benzene	1,3 Buta- diene	PM ₁₀								
Bolton	169	2062	146	7	1.2	9								
Bury	111	1357	96	5	0.8	6								
Manchester	261	3176	225	11	1.8	14								
Oldham	124	1515	107	5	0.9	6								
Rochdale	132	1611	114	5	0.9	7								
Salford	147	1786	127	6	1.0	8								
Stockport	195	2373	168	8	1.3	10								
Tameside	128	1555	110	5	0.9	7								
Trafford	154	1883	133	6	1.1	8								
Wigan	162	1976	140	7	1.1	8								
total	1583	19293	1366	65	10.8	83								

The sum of the rows may not equal the total due to rounding. Totals for CO_2 refer to carbon dioxide as C.

4.2 Point Sources

Table 4.11 shows a summary of the emissions by the various point sources.

Table 4.11

2007 Point Source Emission Totals (Tonnes/Year)												
Pollutant	Part A's	Part B's	Boilers	Petrol Stations	Total							
Non-Methane VOCs	1134	7806	99	2695	11735							
CO	640	771	441		1852							
CO ₂ as C	651740	16245	181262		849246							
NO _X	526	682	746		1954							
SO ₂	107	606	354		1066							
Benzene	1	0	2	4	8							
PM ₁₀					0							
HG	85	517	100		702							
PB	0	0	0		0							
CH ₄	0	0	0		0							

The sum of the columns may not equal the total due to rounding.

4.3 Rail Sources

Table 4.12 shows a summary of the emissions by rail stations and rail tracks.

Table 4.12

2007 Rail Source Emission Totals (Tonnes/Year)						
Pollutant	Rail Track Total					
Non-Methane VOCs	96					
CO	117					
CO ₂ as C	102258					
NO _X	978					
SO ₂	130					
PM ₁₀	32					

4.4 Bus Stations

Table 4.13 shows a summary of the emissions at bus stations.

Table 4.13

2007 Bus Station Emission Totals (Tonnes/Year)						
Pollutant	Total					
VOCs	6.8					
CO	20					
CO ₂ as C	1544					
NO _X	52					
SO ₂	0.1					
Benzene	0					
1,3 Butadiene	0.2					
PM ₁₀	1.7					

4.5 Domestic and Commercial Combustion

4.5.1 Domestic Combustion

Table 4.14 shows a summary of the emissions by all forms of domestic combustion (gas, oil and solid fuel).

Table 4.14

2007 Domestic Combustion Emission Totals (Tonnes/Year)						
Pollutant	Total					
Non-Methane VOCs	196					
CO	3154					
CO ₂ as C	984837					
NO _X	4726					
SO ₂	377					
Benzene	16					
PM ₁₀	61					
CH ₄	398					

4.5.2 Commercial Combustion

Table 4.17 shows a summary of the emissions by all commercial gas combustion.

Table 4.15

2007 Commercial Gas Combustion Emission Totals (Tonnes/Year)				
Pollutant	Total			
Non-Methane VOCs	64			
CO	374			
CO ₂ as C	413034			
NO _X	1627			
Benzene	0			
PM ₁₀	6			
CH ₄	22			

4.6 Electricity Generation

Table 4.16 shows the amount of CO_2 (as carbon) emissions for electricity generation at point of use broken down by District.

Table 4.16

2007 Electricity CO ₂ Emission Totals (Tonnes/Year)						
Pollutant	Total					
Bolton	150668					
Bury	102181					
Manchester	366571					
Oldham	119650					
Rochdale	123228					
Salford	151583					
Stockport	168356					
Tameside	125672					
Trafford	228434					
Wigan	166420					
Total	1702762					

Notes

The sum of the rows may not equal the total due to rounding. CO_2 refers to carbon dioxide as C.

4.7 Aviation

Table 4.17 shows a summary of the emissions by aviation.

Table 4.17

2007 Aviation Emission Totals (Tonnes/Year)							
Pollutant	Total						
VOCs	149						
CO	1098						
NO_X	532						
SO ₂	24						
PM ₁₀	6						

4.8 Area Sources

Table 4.18 shows a summary of the emissions by other area sources.

Table 4.18

2007 Other Emission Totals (Tonnes/Year)						
Pollutant	Total					
VOCs	45708					
CO	18					
NO _X	72					
SO ₂	876					
Benzene	35					
1,3 butadiene	0					
PM ₁₀	51					

4.9 Total Emissions

The following tables and figures give the total emissions, in Greater Manchester and each District separately, from all sources and the relative proportions.

Table 4.19

Pollutant	Road	ls	Rail		Aiı	•	Oth	er	Part /	A's	Part	B's	Boile	rs	Pet	rol	Combustion		Bus		Total		
															Stati	ons			Stations		Stations		
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr		
VOCs	4862	7.7	96	0.2	152	0.2	45708	72.8	1134	1.8	7806	12.4	99	0.2	2695	4.3	261	0.4	7	0.0	62821		
CO	37406	84.9	117	0.3	1098	2.5	18	0.0	640	1.5	771	1.8	441	1.0			3528	8.0	20	0.0	44039		
CO ₂ as C	1097231	31.8	102258	3.0					651740	18.9	16245	0.5	181262	5.3			1397870	40.5	1545	0.0	3448150		
NO_X	15378	60.7	978	3.9	532	2.1	72	0.3	526	2.1	682	2.7	746	2.9			6353	25.1	52	0.2	25320		
SO ₂	102	4.0	130	5.1	24	0.9	876	34.0	107	4.2	606	23.5	354	13.7			377	14.6	0	0.0	2576		
Benzene	109	63.1	0	0.0			35	20.1	1	0.7	0.4	0.2	2	1.0	4	2.5	21	12.4	0	0.0	173		
1,3																							
butadiene	55	99.6	0	0.0			0	0.0											0.2	0.4	55		
PM ₁₀	1393	61.4	32	1.4	6	0.3	51	2.2	85	3.8	517	22.8	100	4.4			83	3.7	2	0.1	2269		
HG			0	0.0					0.003	5.3	0	86.0	0.01	8.7							0		
PB			0.000	0.0					0.03	17.7	0.1	46.2	0.1	36.1							0		
Methane									977	89.5	5	0.5	110	10.0							1092		

The emissions are given in tonnes per year (t/yr)
The sum of the rows may not equal the total due to rounding.

HFAS Report 1679 October 2011

Figure 4.1 SO₂ Emissions in Greater Manchester

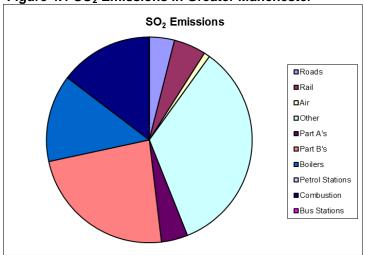


Figure 4.2 NO_X Emissions in Greater Manchester

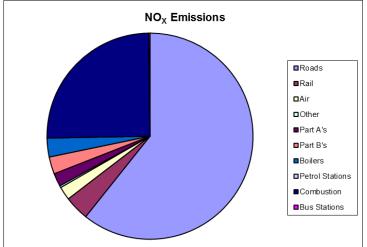


Figure 4.3 CO Emissions in Greater Manchester

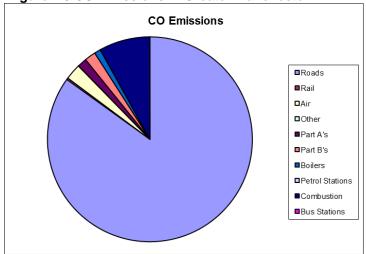


Figure 4.4 VOCs Emissions in Greater Manchester

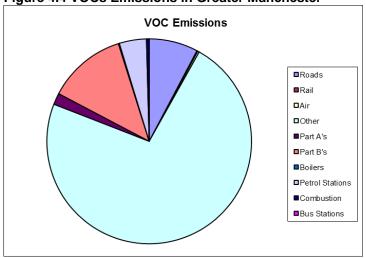


Figure 4.5 CO₂ Emissions in Greater Manchester

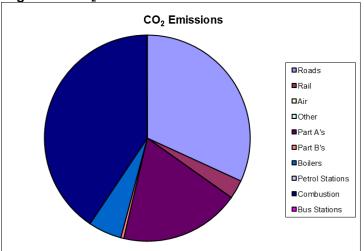
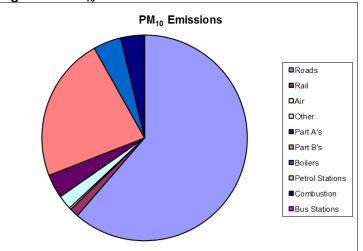



Figure 4.6 PM₁₀ Emissions in Greater Manchester

Table 4.20

Pollutant	Road	ds	Rai	I	Ai	r	Oth	ner	Part	A's	Par	t B's	Boile	ers	Pet	rol	Combus	stion	Βι	IS	Total
															Stati	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	503	9.2	12	0.2			4656	85.5	1	0.0	153	2.8	3	0.1	94	1.7	23	0.4	1	0.0	5446
CO	3967	91.2	14	0.3			2	0.0	14	0.3	1	0.0	52	1.2			300	6.9	1	0.0	4352
CO ₂ as C	113883	38.9	12177	4.2					10510	3.6	240	0.1	22949	7.8			132722	45.4	117	0.0	292599
NO _X	1543	60.9	121	4.8			9	0.4	121	4.8	2	0.1	121	4.8			613	24.2	4	0.2	2534
SO ₂	11	3.3	16	4.7			97	29.1	4	1.3	0	0.1	174	52.2			31	9.4	0	0.0	332
Benzene	12	66.8	0	0.0			3	18.3	0	1.5	0	0.0	0.2	1.3	0	0.9	2	11.2	0	0.0	17
1,3																					
butadiene	5	99.7	0	0.0			0	0.0											0.02	0.3	5
PM ₁₀	149	79.7	4	2.1			5	2.7	1	0.7	4	2.2	17	9.0			6	3.5	0	0.1	187
HG			0	0.0					0.003	26.0	0	52.1	0.00	21.8							0
PB			0	0.0					0.02	32.9	0	11.2	0.0	55.9							0.1
Methane									371	86.7	0.09	0.0	7	1.7			49	11.5			427

Figure 4.7 SO₂ Emissions in Bolton

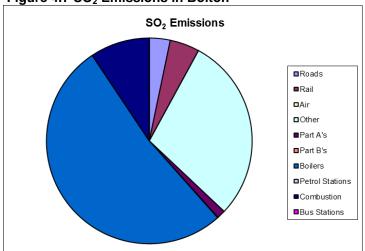


Figure 4.8 NO_X Emissions in Bolton

Figure 4.9 CO Emissions in Bolton

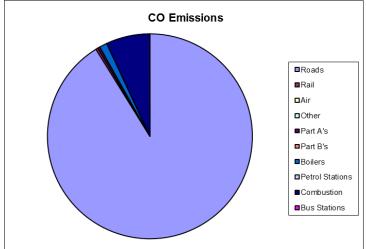


Figure 4.10 VOCs Emissions in Bolton

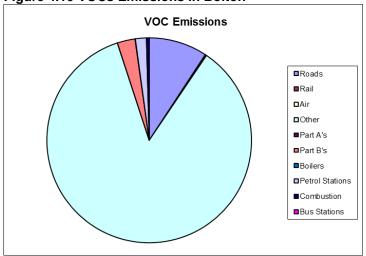


Figure 4.11 CO₂ Emissions in Bolton

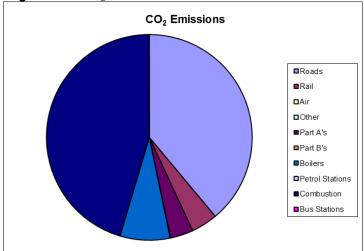
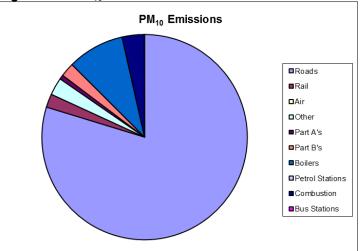



Figure 4.12 PM₁₀ Emissions in Bolton

Table 4.21

Pollutant	Road	ds	Ra	il	Ai	r	Oth	er	Part .	A's	Part	B's	Boile	ers	Pet	rol	Combus	stion	Bu	IS	Total
															Stati	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	385	6.9					3071	55.3	585	10.5	1397	25.2	0	0.0	95	1.7	19	0.3	0	0.0	5553
CO	2868	87.1					1	0.0	166	5.0	4	0.1	14	0.4			238	7.2	1	0.0	3293
CO ₂ as C	103506	35.4							76135	26.1	4594	1.6	1660	0.6			106043	36.3	103	0.0	292041
NOX	1497	71.4					7	0.3	80	3.8	18	0.9	11	0.5			480	22.9	3	0.2	2098
SO ₂	10	5.3					69	38.3	32	17.6	0	0.0	40	22.1			30	16.7	0	0.0	180
Benzene	8	64.9					3	20.8	0.0	0.0	0.1	0.5	0	0.0	0.2	1.2	2	12.6	0	0.0	13
1,3 butadiene	5	99.7					0	0.0											0.01	0.3	5
PM ₁₀	128	43.9					3	1.1	7	2.3	142	49.0	5	1.6			6	1.9	0.1	0.0	290
HG									0	0.0	0	0.0	0.00101	100.0							0.0010
PB									0	0.0	0.0000	0.0	0.011	100.0							0.011
Methane									0	0.0	1.65	4.0	0	0.1			40	95.9			42

Figure 4.13 SO₂ Emissions in Bury

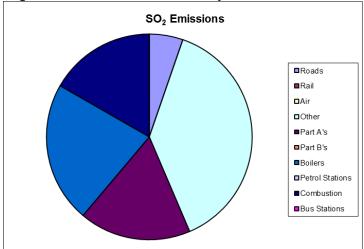


Figure 4.14 NO_X Emissions in Bury

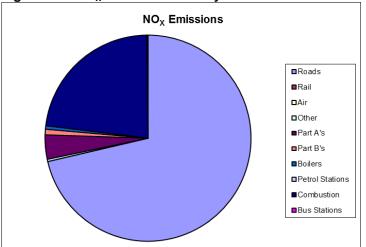


Figure 4.15 CO Emissions in Bury

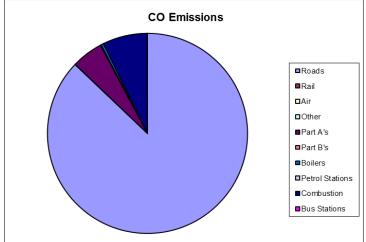


Figure 4.16 VOCs Emissions in Bury

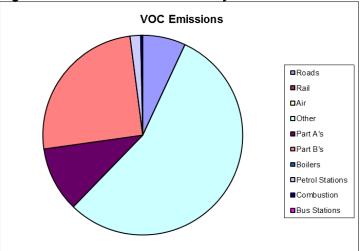


Figure 4.17 CO₂ Emissions in Bury

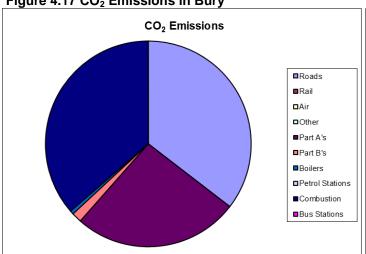
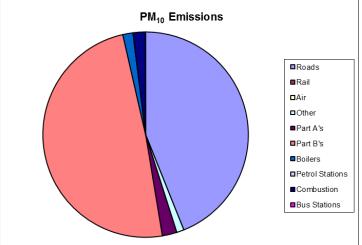



Figure 4.18 PM₁₀ Emissions in Bury

Table 4.22

Pollutant	Roa	ds	Ra	il	Ai	r	Oth	er	Part /	A's	Part	B's	Boile	ers	Pet	rol	Combu	stion	Bu	S	Total
															Stati	ons			Statio	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	788	8.0	23	0.2	149	1.5	8589	86.7	5	0.0	118	1.2	3	0.0	191	1.9	37	0.4	3	0.0	9904
CO	6193	79.0	26	0.3	976	12.4	2	0.0	4	0.0	190	2.4	17	0.2			424	5.4	7	0.1	7839
CO ₂ as C	156047	35.8	23836	5.5					2093	0.5	1384	0.3	19040	4.4			232762	53.4	578	0.1	435741
NO_X	2084	52.0	230	5.7	532	13.3	3	0.1	8	0.2	5	0.1	76	1.9			1053	26.2	20	0.5	4011
SO ₂	15	7.5	30	15.5	24	12.2	80	40.7	0.1	0.1	26	13.4	0	0.0			21	10.6	0	0.0	196
Benzene	18	69.2	0	0.0	0	0.0	4	16.1	0	0.0	0	0.0	0	1.0	0.3	1.2	3	12.6	0	0.0	26
1,3																					
butadiene	8	99.1	0	0.0	0	0.0	0	0.0											0.07	0.9	9
PM ₁₀	202	78.4	7	2.9	6	2.5	10	3.8	0	0.0	20	7.7	1	0.4			10	4.0	0.6	0.2	257
HG			0	0.0					0	0.0	0.01	100.0	0.000	0.0							0.01
PB			0	0.0					0	0.0	0.0	100.0	0.00	0.0							0.0
Methane								-	0	0.0	0.2	0.3	7	7.6			83	92.2			90

Figure 4.19 SO₂ Emissions in Manchester

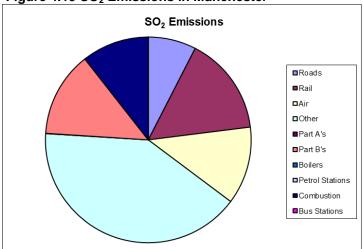


Figure 4.20 NO_X Emissions in Manchester

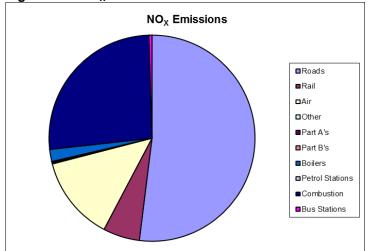


Figure 4.21 CO Emissions in Manchester

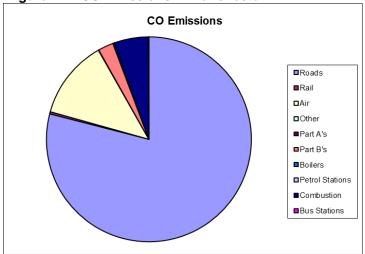


Figure 4.22 VOCs Emissions in Manchester

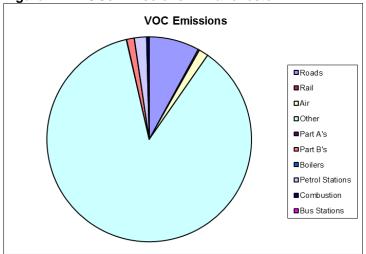


Figure 4.23 CO₂ Emissions in Manchester

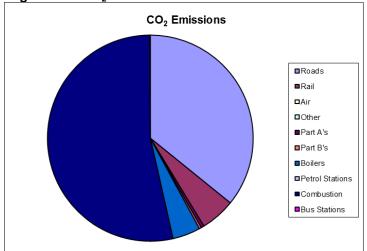
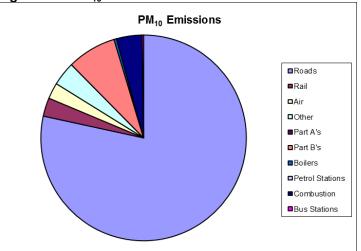



Figure 4.24 PM₁₀ Emissions in Manchester

Table 4.23

2007 Tot	al Emi	issio	ns in Ol	dhai	m froi	m all	sourc	es													
Pollutant	Roa	ds	Rai		Ai	r	Oth	ner	Part A	A's	Par	t B's	Boile	rs	Pet	rol	Combus	stion	Bu	IS	Total
															Stati	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	338	7.6	6	0.1			3944	88.5	0	0.0	60	1.3	1	0.0	87	1.9	21	0.5	0	0.0	4457
CO	2646	89.2	6	0.2			2	0.1	7	0.2	10	0.3	5	0.2			291	9.8	1	0.0	2967
CO ₂ as C	62268	31.4	5923	3.0					11400	5.7	1369	0.7	6681	3.4			110632	55.8	97	0.0	198371
NO_X	858	58.2	58	3.9			7	0.4	2	0.1	11	0.8	25	1.7			510	34.6	3	0.2	1474
SO ₂	6	3.7	8	4.7			97	59.7	1.4	0.9	7	4.2	10	6.3			33	20.6	0	0.0	162
Benzene	8	63.7	0	0.0			3	21.1	0.00	0.0	0	0.0	0.1	0.5	0.1	1.1	2	13.5	0	0.0	13
1,3																					
butadiene	3	99.6	0	0.0			0	0.0											0.01	0.4	3
PM ₁₀	84	77.5	1.9	1.7			4	4.0	0	0.0	11	9.8	1	0.9			6	5.9	0.1	0.1	108
HG			0	0.0					0	0.0	0.01	99.7	0.000	0.3							0.01
PB			0	0.0					0	0.0	0.1	98.5	0.00	1.5							0.1
Methane									0	0.0	0.01	0.0	3	6.0			43	93.9			46

Figure 4.25 SO₂ Emissions in Oldham

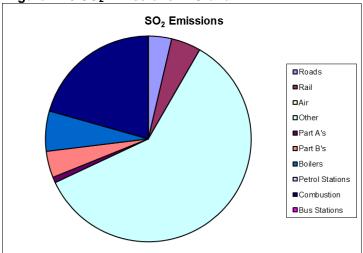


Figure 4.26 NO_X Emissions in Oldham

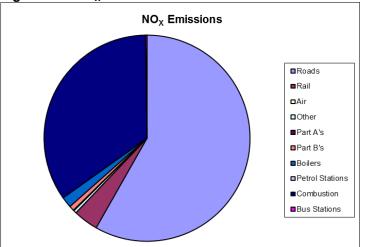


Figure 4.27 CO Emissions in Oldham

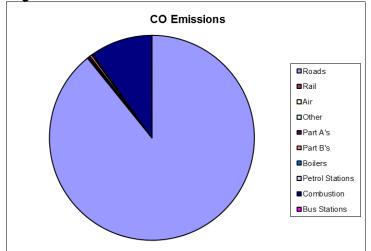


Figure 4.28 VOCs Emissions in Oldham

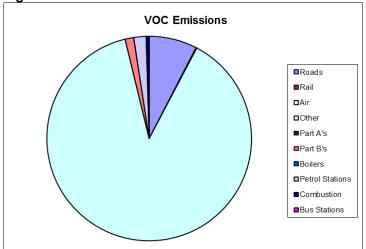


Figure 4.29 CO₂ Emissions in Oldham

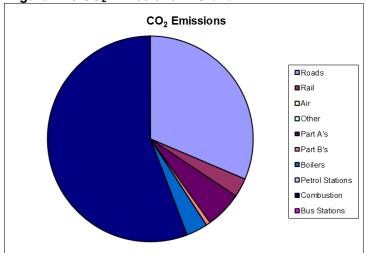
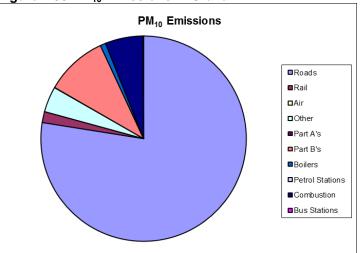



Figure 4.30 PM₁₀ Emissions in Oldham

Table 4.24

Pollutant	Road	ds	Rai	l	Ai	r	Oth	ner	Part .	A's	Par	t B's	Boile	ers	Pet	rol	Combus	stion	Βι	IS	Total
															Stati	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	445	4.9	5	0.1			4031	44.8	10	0.1	4364	48.5	3	0.0	115	1.3	23	0.3	1	0.0	8997
CO	3207	89.5	5	0.1			2	0.1	0	0.0	1	0.0	17	0.5			349	9.7	2	0.0	3582
CO ₂ as C	119436	46.9	4948	1.9					1000	0.4	268	0.1	18759	7.4			110262	43.3	129	0.1	254803
NO _X	1820	74.1	48	1.9			3	0.1	0	0.0	2	0.1	75	3.1			502	20.5	4	0.2	2455
SO ₂	11	6.2	6	3.6			109	63.3	0	0.1	0	0.1	0	0.2			46	26.4	0	0.0	173
Benzene	9	60.4	0	0.0			4	24.7	0.0	0.0	0	0.0	0.3	1.8	0.2	1.2	2	11.9	0	0.0	15
1,3																					
butadiene	6	99.7	0	0.0			0	0.0											0.02	0.3	6
PM ₁₀	143	41.2	2	0.4			4	1.2	0	0.0	189	54.5	1	0.3			8	2.3	0.1	0.0	348
HG			0.00000	0.0					0	0.0	0.00	99.8	0.000	0.2							0.00
PB			0.000	0.0					0.00	0.0	0.0	94.5	0.00	5.5							0.0
Methane									0	0.0	0.10	0.2	7	12.7			46	87.1			53

Figure 4.31 SO₂ Emissions in Rochdale

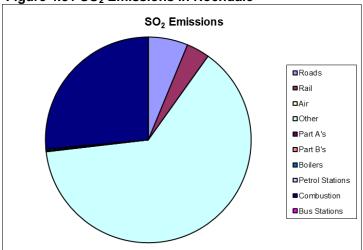


Figure 4.32 NO_X Emissions in Rochdale

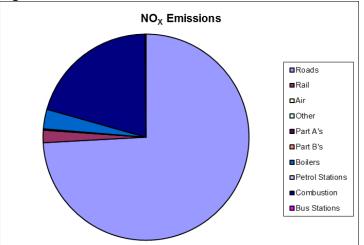


Figure 4.33 CO Emissions in Rochdale

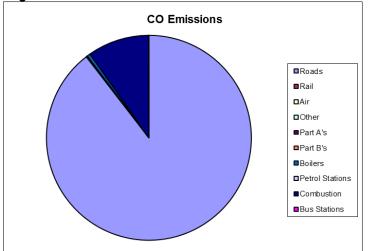


Figure 4.34 VOCs Emissions in Rochdale

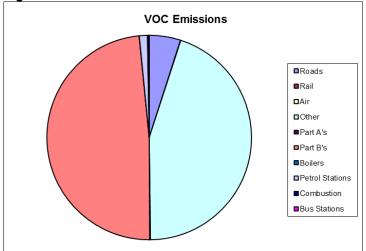


Figure 4.35 CO₂ Emissions in Rochdale

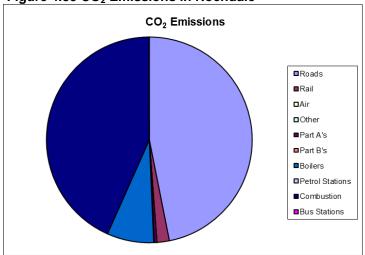
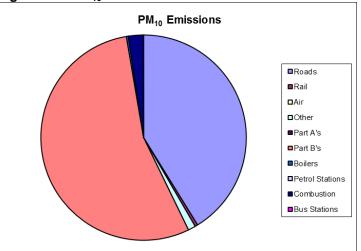



Figure 4.36 PM₁₀ Emissions in Rochdale

Table 4.25

2007 Tot	al Emis	ssion	s in Sa	alford	d fror	n all	sour	ces													
Pollutant	Road	ds	Rai	I	Ai	r	Oth	ner	Part A	's	Part	B's	Boile	rs	Pet	rol	Combu	stion	Вι	ıs	Total
															Stati	ons			Stati	ions	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	537	11.1	14	0.3	3	0.1	3976	82.3	0	0.0	159	3.3	3	0.1	114	2.4	24	0.5	0	0.0	4829
CO	3973	88.3	16	0.3	100	2.2	1	0.0	40	0.9	1	0.0	17	0.4			349	7.8	1	0.0	4497
CO ₂ as C	151523	48.2	14370	4.6					13062	4.2	470	0.1	18655	5.9			116436	37.0	103	0.0	314618
NO_X	2216	74.2	139	4.7	1	0.0	5	0.2	17	0.6	2	0.1	75	2.5			527	17.6	3	0.1	2986
SO ₂	13	9.7	18	13.3	0	0.0	67	48.8	3	2.3	0	0.1	0	0.0			36	25.8	0	0.0	138
Benzene	11	59.2	0	0.0	0	0.0	4	23.1	0.9	5.1	0.01	0.0	0	1.4	0.2	1.0	2	10.1	0	0.0	19
1,3																					
butadiene	7	99.8	0	0.0	0	0.0	0	0.0											0.01	0.2	7
PM_{10}	182	82.6	5	2.1	0	0.0	5	2.1	3	1.5	16	7.5	1	0.5			8	3.8	0	0.1	221
HG									0.00	0.0	0.0038	100.0	0	0.0							0.00
PB									0.00	0.0	0.0001	98.5	0.00	1.5							0.00
Methane									446	89.1	0	0.0	7	1.3			48	9.6			501

Figure 4.37 SO2 Emissions in Salford

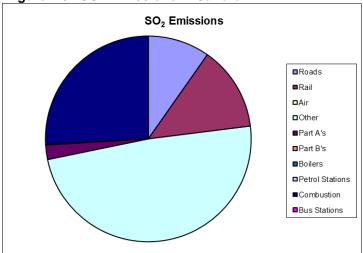


Figure 4.38 NOX Emissions in Salford

Figure 4.39 CO Emissions in Salford

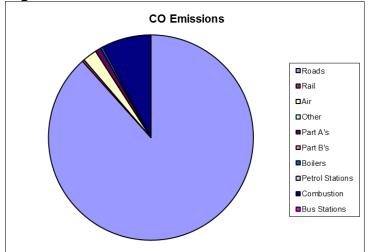


Figure 4.40 VOCs Emissions in Salford

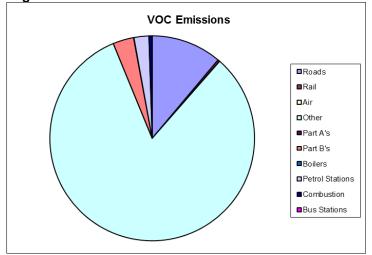


Figure 4.41 CO2 Emissions in Salford

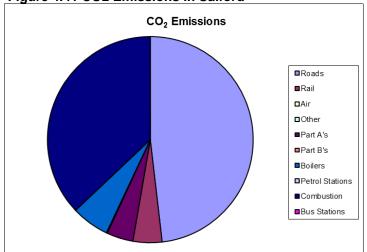


Figure 4.42 PM10 Emissions in Salford

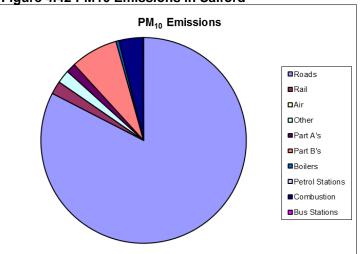


Table 4.26

Pollutant	Road	ds	Rai	I	Ai	r	Oth	ner	Part	A's	Part	B's	Boiler	S	Pet	rol	Combu	stion	Βι	IS	Total
															Stati	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	551	8.2	16	0.2			4797	71.3	0	0.0	1214	18.0	1	0.0	124	1.8	25	0.4	0	0.0	6729
CO	4361	92.3	22	0.5			2	0.0	0	0.0	0	0.0	8	0.2			330	7.0	1	0.0	4724
CO ₂ as C	104976	37.4	17259	6.2					0	0.0	165	0.1	8439	3.0			149387	53.3	91	0.0	280317
NO _X	1381	60.6	161	7.1			5	0.2	0	0.0	2	0.1	34	1.5			691	30.3	3	0.1	2278
SO ₂	10	6.6	22	14.3			87	56.5	0	0.0	3	2.1	0	0.0			32	20.5	0	0.0	154
Benzene	13	69.2	0	0.0			3	17.4	0	0.0	0	0.2	0.1	0.6	0.2	1.1	2	11.5	0	0.0	19
1,3																					
butadiene	6	99.8	0	0.0			0	0.0											0.01	0.2	6
PM ₁₀	138	63.8	5	2.4			6	2.6	0	0.0	60	27.7	0	0.2			7	3.3	0.1	0.0	217
HG			0	0.0					0	0.0	0.00	100.0	0	0.0							0.00
PB			0	0.0					0	0.0	0.0001	100.0	0.0000000	0.0							0.0001
Methane									0	0.0	0.08	0.1	3	5.2			55	94.7			58

Figure 4.43 SO2 Emissions in Stockport

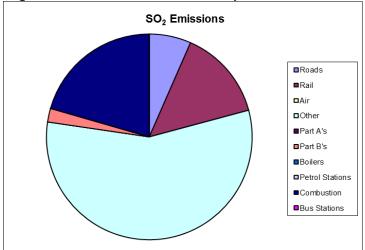


Figure 4.44 NOX Emissions in Stockport

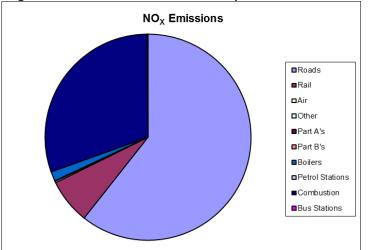


Figure 4.45 CO Emissions in Stockport

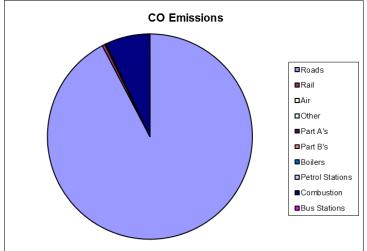


Figure 4.46 VOCs Emissions in Stockport

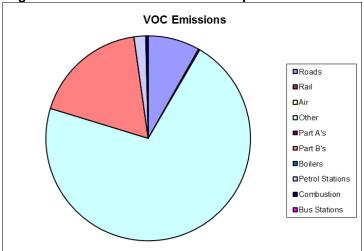


Figure 4.47 CO2 Emissions in Stockport

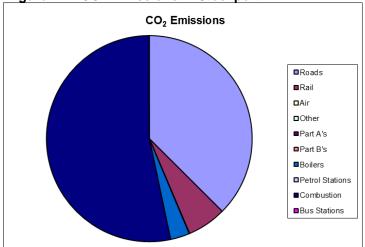
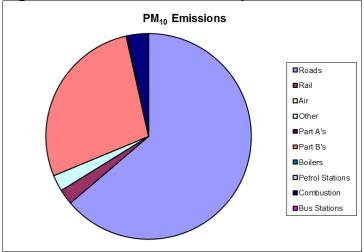



Figure 4.48 PM10 Emissions in Stockport

Table 4.27

Pollutant	Roa	ds	Rai	I	Ai	r	Oth	ner	Part A	A's	Part	B's	Boile	rs	Peti	rol	Combus	stion	Bu	IS	Total
															Statio	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	360	8.5	7	0.2	0	0.0	3646	86.2	13	0.3	74	1.7	1	0.0	106	2.5	20	0.5	1	0.0	4228
CO	2815	90.5	7	0.2	0	0.0	1	0.0	0	0.0	20	0.6	5	0.1			263	8.4	2	0.1	3112
CO ₂ as C	75313	36.8	7352	3.6					2080	1.0	0	0.0	4990	2.4			114817	56.1	145	0.1	204696
NO _X	1056	62.0	68	4.0	0	0.0	6	0.4	1	0.0	17	1.0	26	1.5			524	30.8	5	0.3	1704
SO ₂	7	1.0	9	1.3	0	0.0	71	10.2	0	0.0	568	81.4	15	2.1			27	3.9	0	0.0	698
Benzene	8	60.6	0	0.0	0	0.0	3	25.3	0	0.0	0	0.0	0.1	0.4	0.2	1.2	2	12.4	0	0.0	14
1,3																					
butadiene	4	99.5	0	0.0	0	0.0	0	0.0											0.02	0.5	4
PM ₁₀	99	80.0	2	1.8	0	0.0	4	3.4	0	0.0	11.1	9.0	1	0.8			6	4.9	0.2	0.1	123
HG			0	0.0					0	0.0	0.00	99.6	0.00001	0.4							0.00
PB			0	0.0					0	0.0	0.00058	54.6	0.0005	45.4							0.0011
Methane									0	0.0	0	0.0	2	4.2			43	95.8	•		45

Figure 4.49 SO₂ Emissions in Tameside

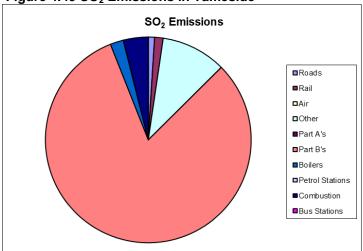


Figure 4.50 NO_X Emissions in Tameside

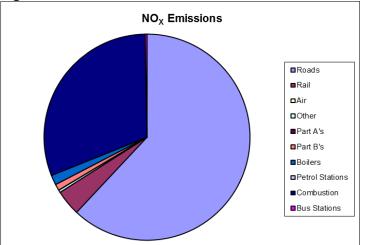


Figure 4.51 CO Emissions in Tameside

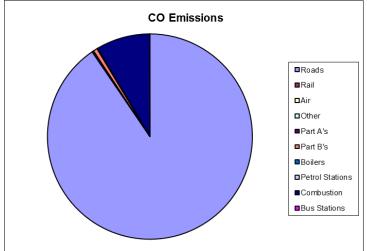


Figure 4.52 VOCs Emissions in Tameside

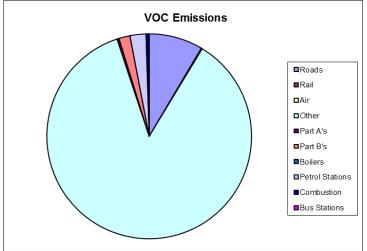


Figure 4.53 CO₂ Emissions in Tameside

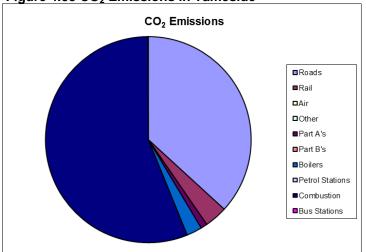
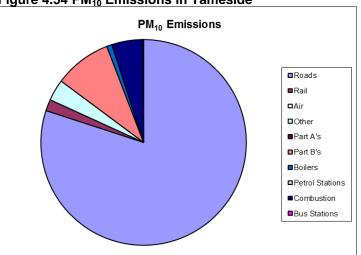



Figure 4.54 PM₁₀ Emissions in Tameside

Table 4.28

Pollutant	Roa	ds	Rail		Ai	r	Oth	ner	Part A	A's	Par	B's	Boile	ers	Pet	rol	Combus	stion	Bu	IS	Total
															Stati	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	430	6.0	4	0.1	1	0.0	4289	60.3	505	7.1	169	2.4	81	1.1	1609	22.6	30	0.4	0	0.0	7118
CO	3376	69.4	4	0.1	23	0.5	1	0.0	286	5.9	537	11.0	276	5.7			362	7.4	1	0.0	4866
CO ₂ as C	82316	9.8	4327	0.5					520110	62.1	0	0.0	60093	7.2			170699	20.4	61	0.0	837605
NOX	1106	39.0	41	1.5	0	0.0	22	0.8	113	4.0	590	20.8	210	7.4			753	26.5	2	0.1	2838
SO ₂	8	4.9	6	3.4	0	0.0	73	45.4	0	0.2	0	0.1	44	27.5			30	18.6	0	0.0	162
Benzene	10	52.3	0	0.0	0	0.0	4	19.5	0.0	0.0	0	0.6	0.2	0.9	3	13.4	3	13.3	0	0.0	19
1,3																					
butadiene	4	99.8	0.0	0.0	0	0.0	0	0.0											0.01	0.2	4
PM ₁₀	109	35.8	1.3	0.4	0	0.0	5	1.5	60	19.7	53	17.5	66	21.7			10	3.2	0	0.0	304
HG			0	0.0					0	0.0	0.00	88.3	0.00	11.7							0.00
PB			0	0.0					0	0.0	0	0.0	0.0	100.0						•	0.0
Methane									0	0.0	0	0.0	67	51.0			65	49.0			132

Figure 4.55 SO₂ Emissions in Trafford

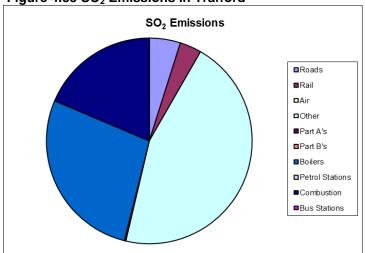


Figure 4.56 NO_X Emissions in Trafford

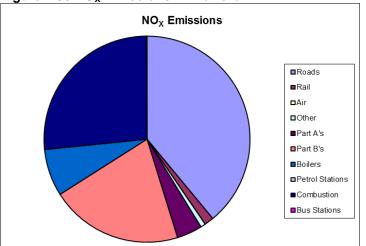


Figure 4.57 CO Emissions in Trafford

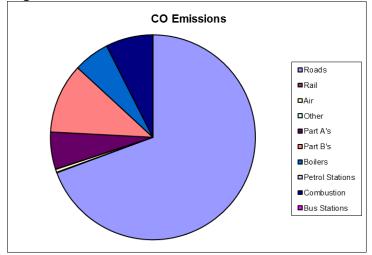


Figure 4.58 VOCs Emissions in Trafford

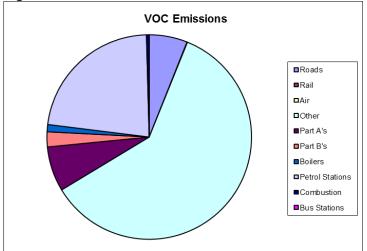


Figure 4.59 CO₂ Emissions in Trafford

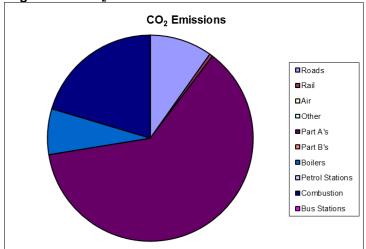
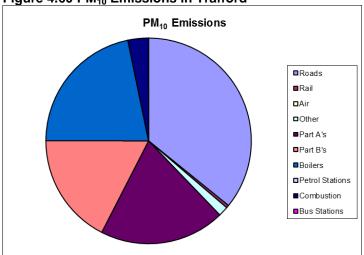



Figure 4.60 PM₁₀ Emissions in Trafford

Table 4.29

2007 Tot	al Emis	ssion	s in Wi	gan	from	all so	ource	S													
Pollutant	Road	ds	Rai	ı	Ai	r	Oth	ner	Part	A's	Par	t B's	Boile	ers	Pet	rol	Combus	stion	Вι	ıs	Total
															Stati	ons			Stati	ons	
	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr	%	t/yr
VOCs	525	9.4	11	0.2	0	0.0	4710	84.7	15	0.3	99	1.8	3	0.1	159	2.9	38	0.7	1	0.0	5561
CO	4000	83.2	17	0.3	0	0.0	3	0.1	124	2.6	8	0.2	30	0.6			622	12.9	2	0.0	4805
CO ₂ as C	127965	37.9	12067	3.6					15351	4.6	7752	2.3	19996	5.9			154109	45.7	122	0.0	337361
NOX	1815	61.7	111	3.8	0	0.0	5	0.2	185	6.3	32	1.1	92	3.1			700	23.8	4	0.1	2944
SO ₂	12	3.0	15	4.0	0	0.0	126	32.9	66	17.3	0	0.0	71	18.5			92	24.1	0	0.0	381
Benzene	12	62.8	0	0.0	0	0.0	3	18.7	0.0	0.1	0.11	0.6	0	1.3	0.3	1.4	3	15.0	0	0.0	18
1,3																					
butadiene	6	99.7	0	0.0	0	0.0	0	0.0											0.02	0.3	6
PM ₁₀	160	74.5	4	1.7	0	0.0	5	2.5	14	6.5	10	4.5	7	3.4			15	6.9	0.1	0.1	215
HG			0	0.0					0	0.0	0.01	84.7	0.001	15.3							0.01
PB			0	0.0					0.01	49.9	0.00	1.7	0.01	48.4							0.0
Methane									160	66.6	2.8	1.2	7	2.9			71	29.4			240

Figure 4.61 SO₂ Emissions in Wigan

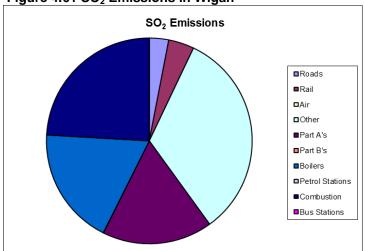


Figure 4.62 NO_X Emissions in Wigan

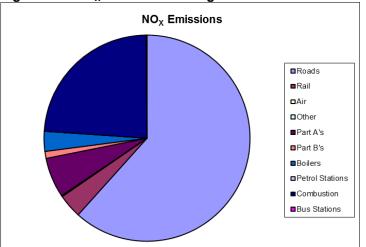


Figure 4.63 CO Emissions in Wigan

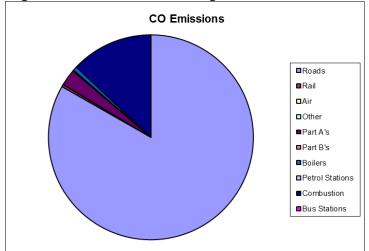


Figure 4.64 VOCs Emissions in Wigan

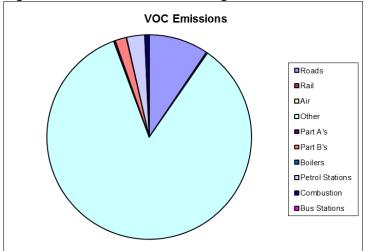


Figure 4.65 CO₂ Emissions in Wigan

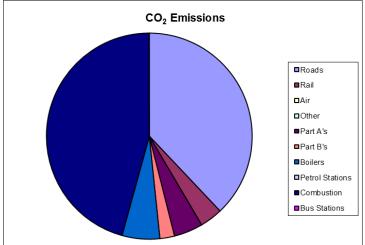
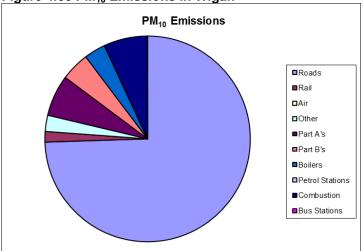



Figure 4.66 PM₁₀ Emissions in Wigan

5. References

1. Greater Manchester Saturn Model – Local Model Validation Report GMTU Report 1250, June 2007

2. GMCOUNTS User Guide Version 4.0 GMTU, January 2003

3. Producing Traffic Flows for EMIGMA using SATURN – A Guide GMTU Note 426. June 2007

4. Production Of the CONSTAD Traffic Count Factors GMTU Note 301, May 1995

5. GMTimes User Guide GMTU, January 2003

 The Greater Manchester Emissions Inventory 2005 Update GMTU Report 1331, July 2007

7. UK Fleet Projections 1996-2025 www.naei.org.uk/other/uk_fleet_composition_projections_v1.xls

8. Transport Statistics Great Britain 2007 Edition http://www.dft.gov.uk/pgr/statistics/datatablespublications/tsgb

Transport Statistics Greater Manchester 2007
 GMTU Report 1387, November 2008

10. Speed Emission Factor Coefficients www.naei.org.uk/other/vehicle_emissions_v8.xls

11. Modelling Minor Road Traffic Flows Using SATURN and the Integrated Transport Network GMTU Report 1300, April 2007

12. UK Greenhouse Gas Inventory, 1990 to 2005. Annual Report for submission under the Framework Convention on Climate Change.

http://www.airquality.co.uk/archive/reports/cat07/0704261626_ukghgi-90-05 main chapters final.pdf

 Modelling Cold Starts Emissions Using SATURN GMTU Note 431, August 2007

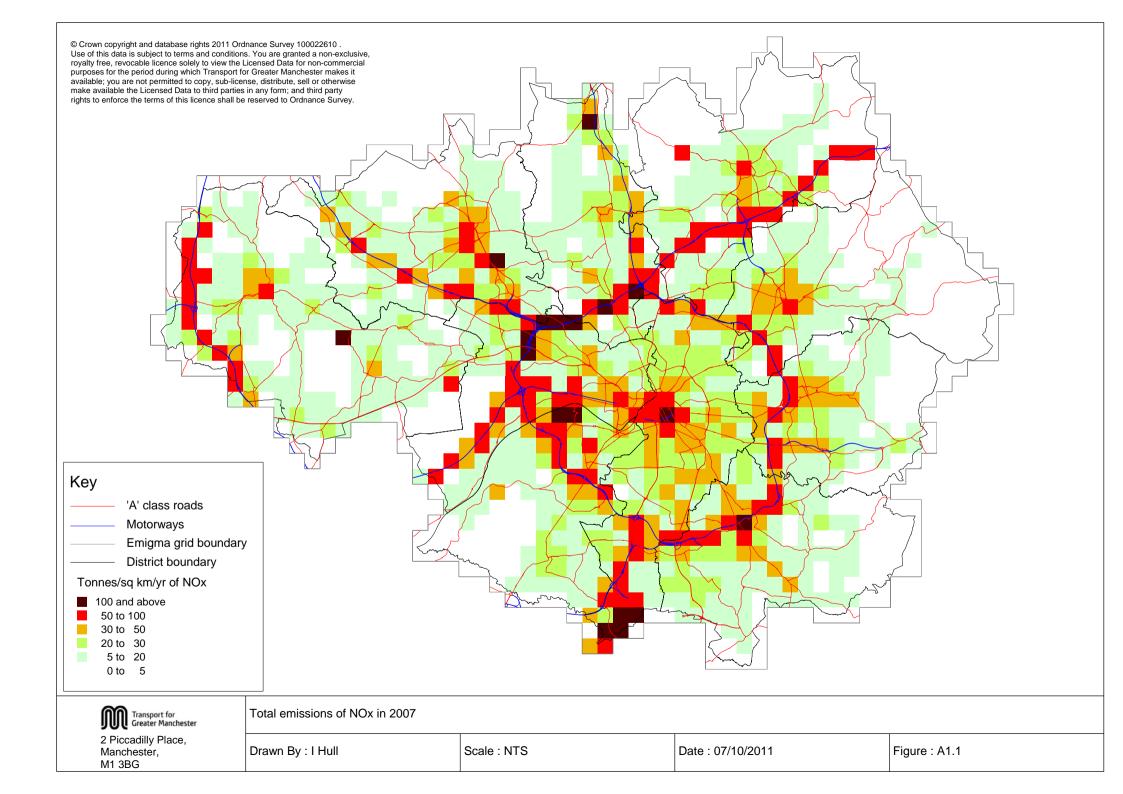
14. National Atmospheric Emissions Inventory <u>www.naei.org.uk/emissions/selection.php</u>

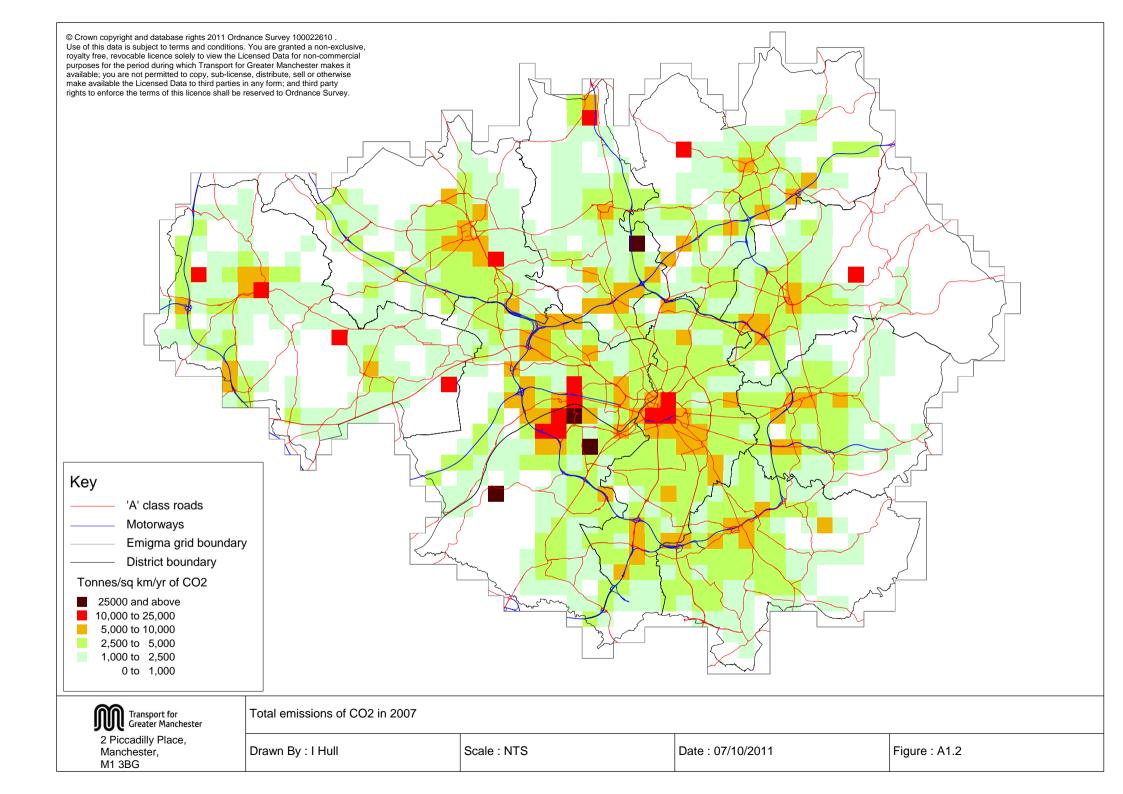
15. Estimates of non gas, non electricity and non road transport fuels at regional and local authority level: 2005, 2006 and 2007

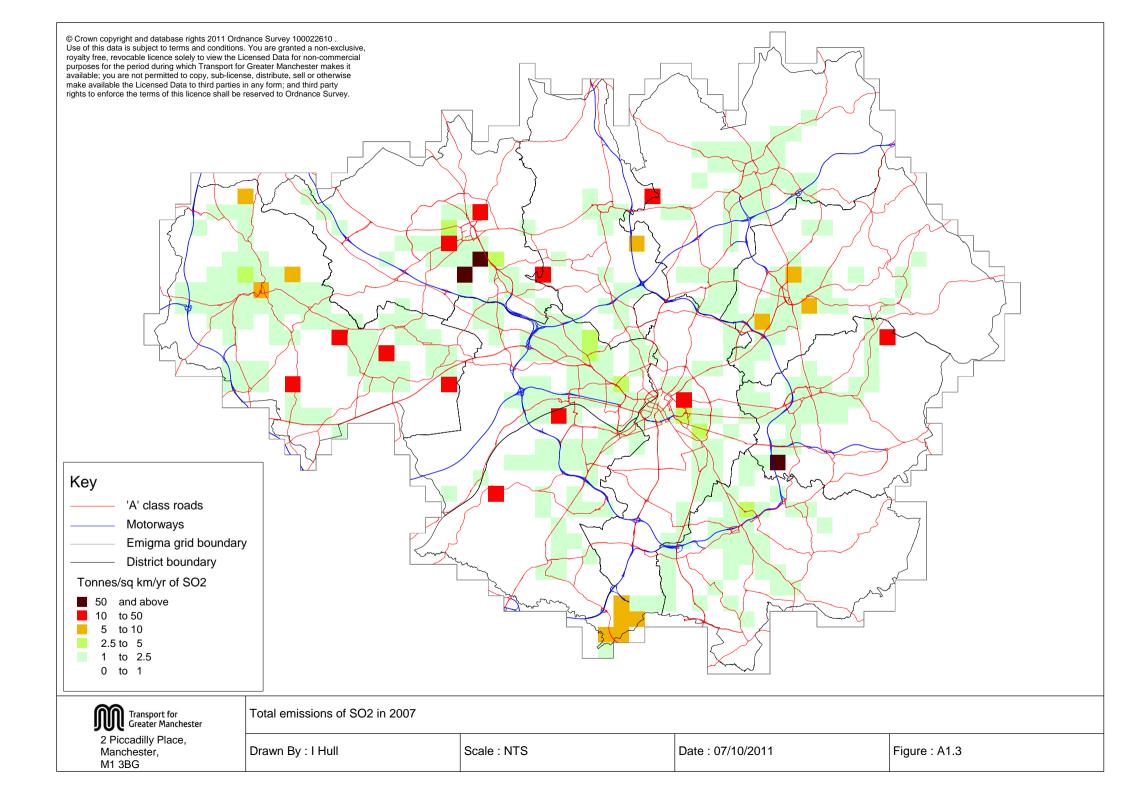
http://www.decc.gov.uk/en/content/cms/statistics/energy_stats/regional/other/other.as

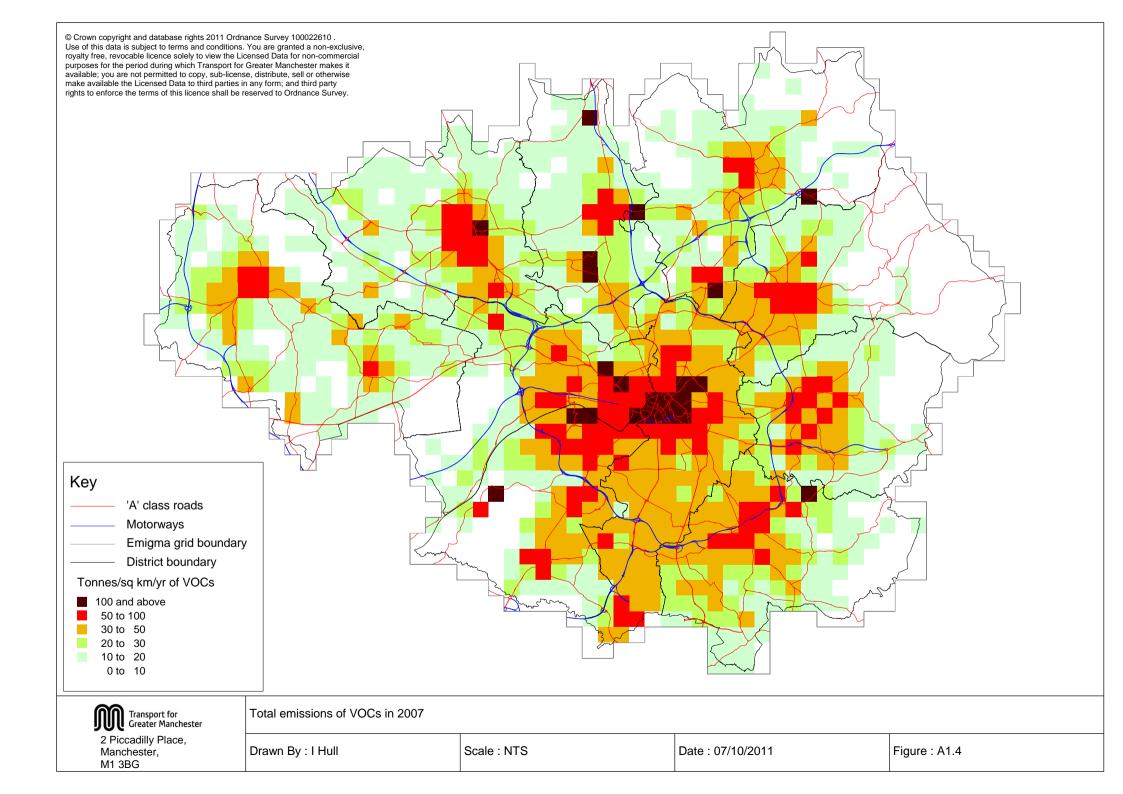
px

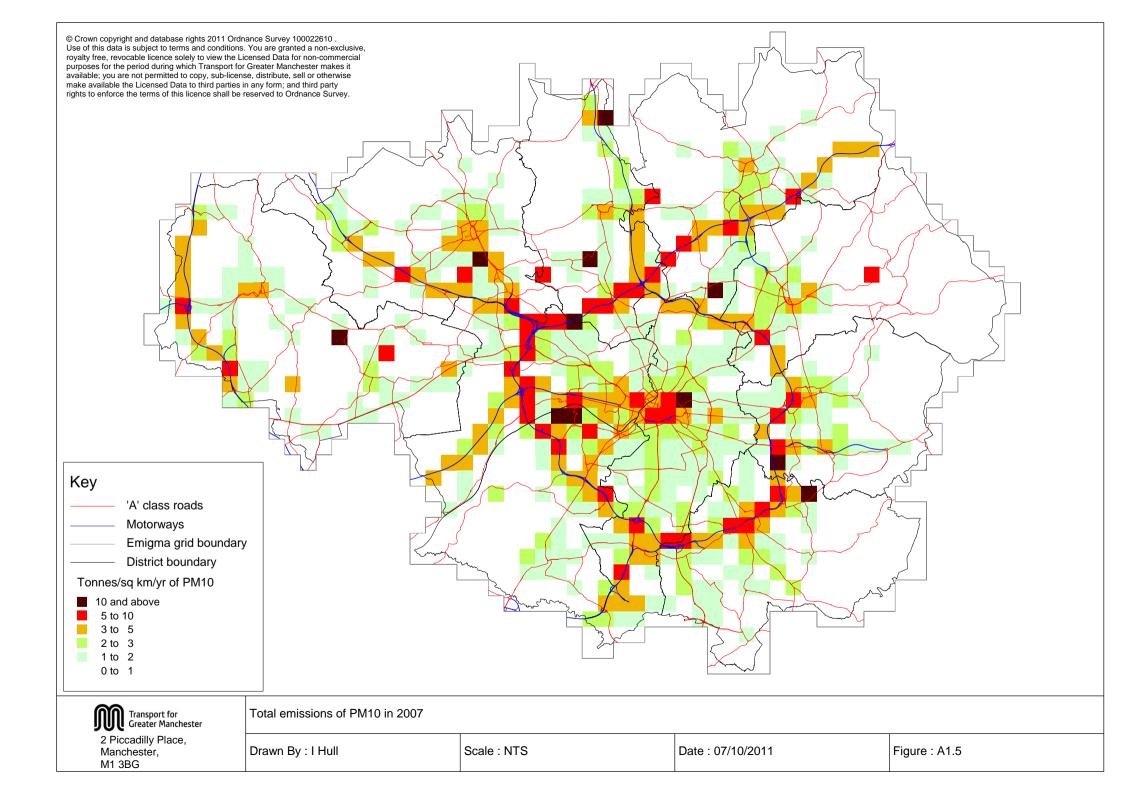
16. EMEP/CORINAIR Emission Inventory Guidebook - 2006 http://reports.eea.europa.eu/EMEPCORINAIR4/en/page002.html

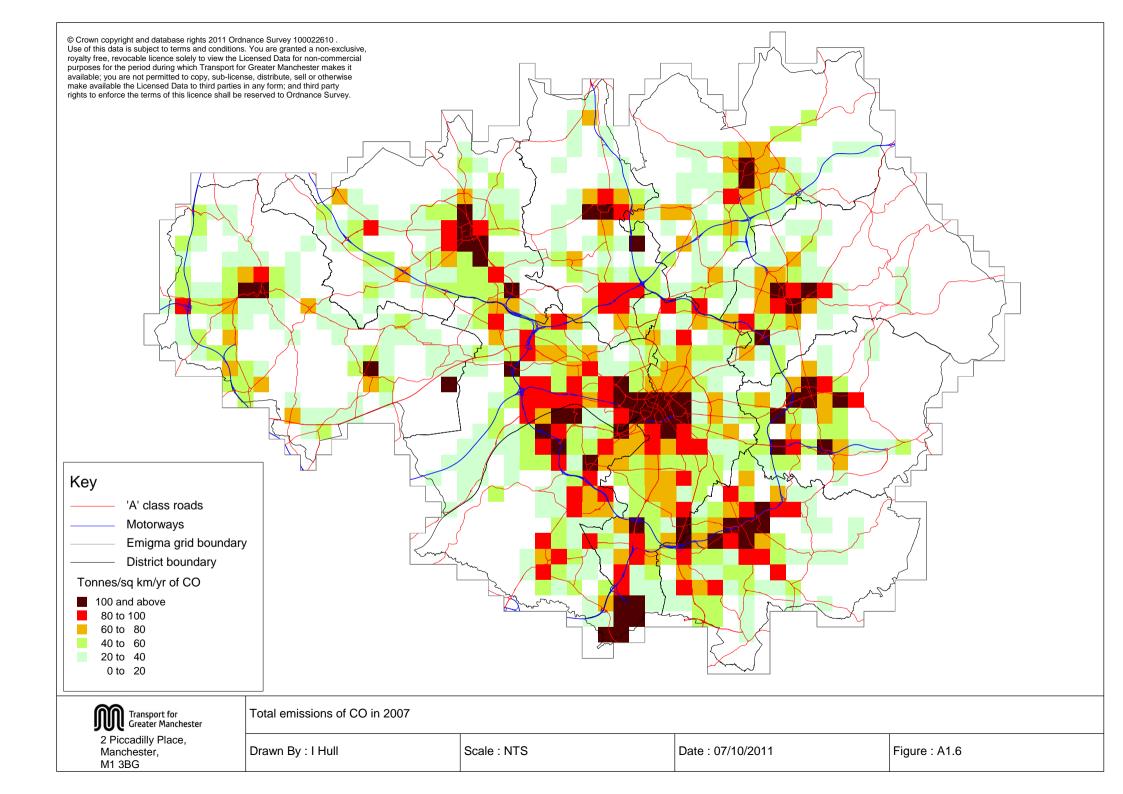

- 17. Gas and Electricity Consumption Data at Middle Layer Super Output Area Level http://www.decc.gov.uk/en/content/cms/statistics/energy_stats/regional/regional.aspx
- 18. Digest of United Kingdom Energy Statistics 2008
 http://www.decc.gov.uk/media/viewfile.ashx?filepath=statistics/publications/dukes/dukes08.pdf&filetype=4&minwidth=true
- 19. Royal Haskoning, November 2006, EMIGMA Industrial Air Pollutant Emissions Sources Emission Factor Handbook, Greater Manchester Transportation Unit
- 20. Royal Haskoning, November 2006, EMIGMA industrial emissions (point source) database, update on 2004 inventory
- 21. Federal Office of Civil Aviation FOCA http://www.bazl.admin.ch/fachleute/01169/01174/index.html?lang=en
- 22. Rail Emission Model
 AEA Technology, November 2001
 http://www.dft.gov.uk/pgr/rail/researchtech/research/railemissionmodel.pdf

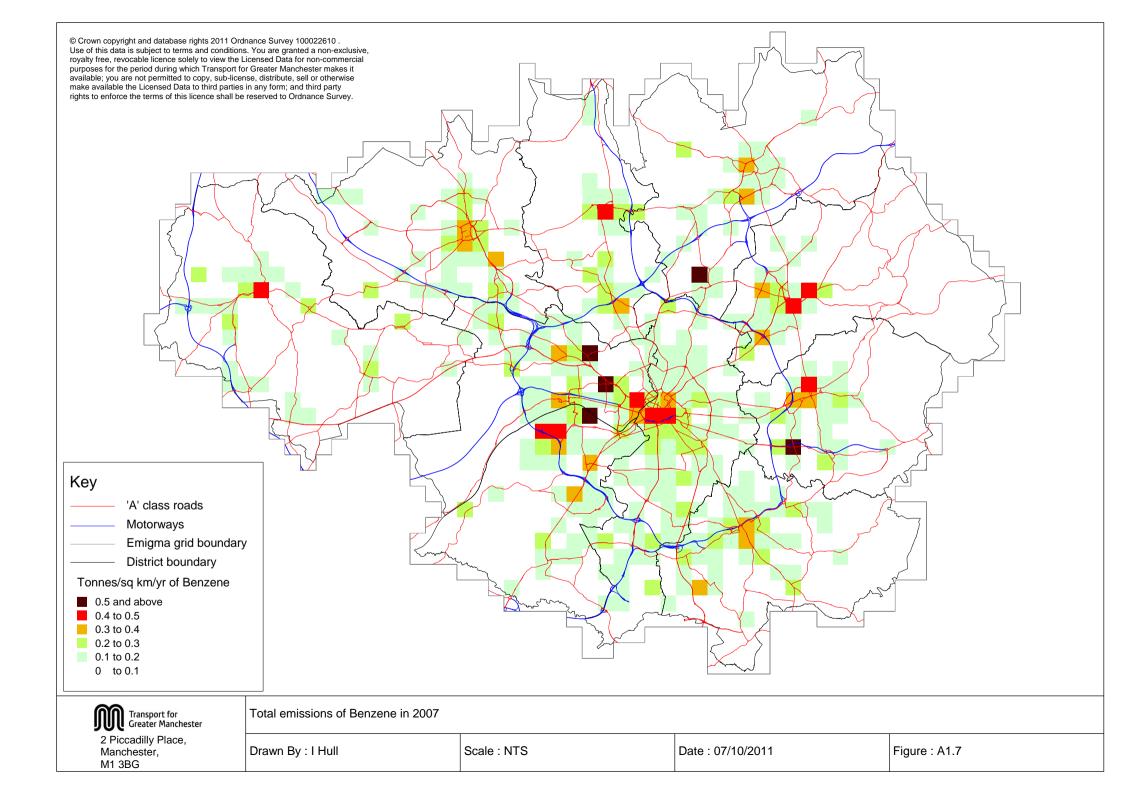

Appendices

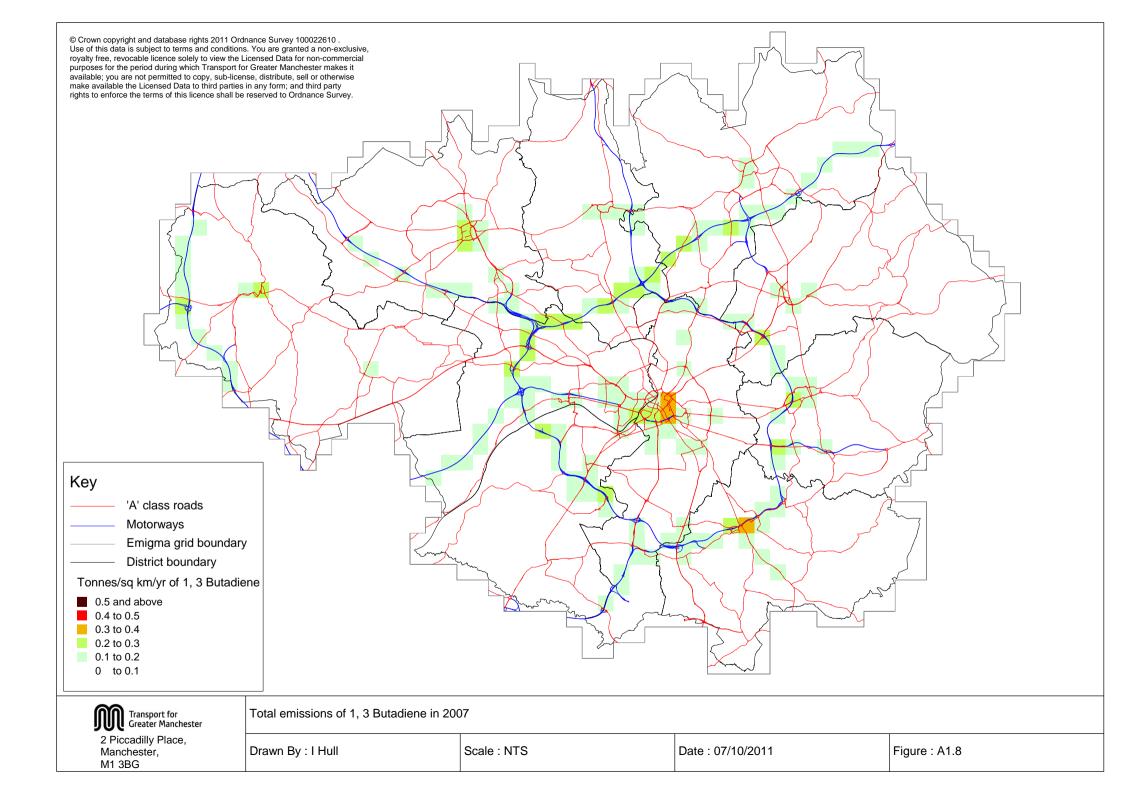

Appendix 1 Maps of emissions from all sources

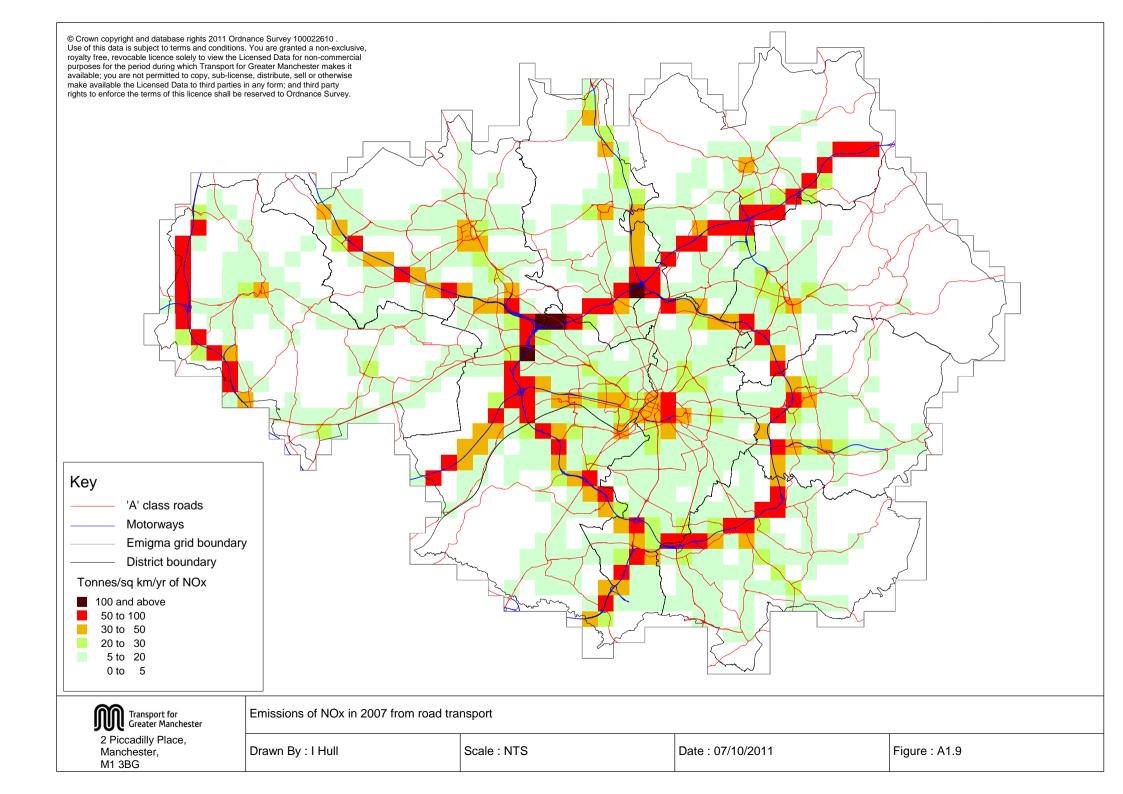

The following figures show maps of emissions from all sources, road transport and electricity generation at point of use.

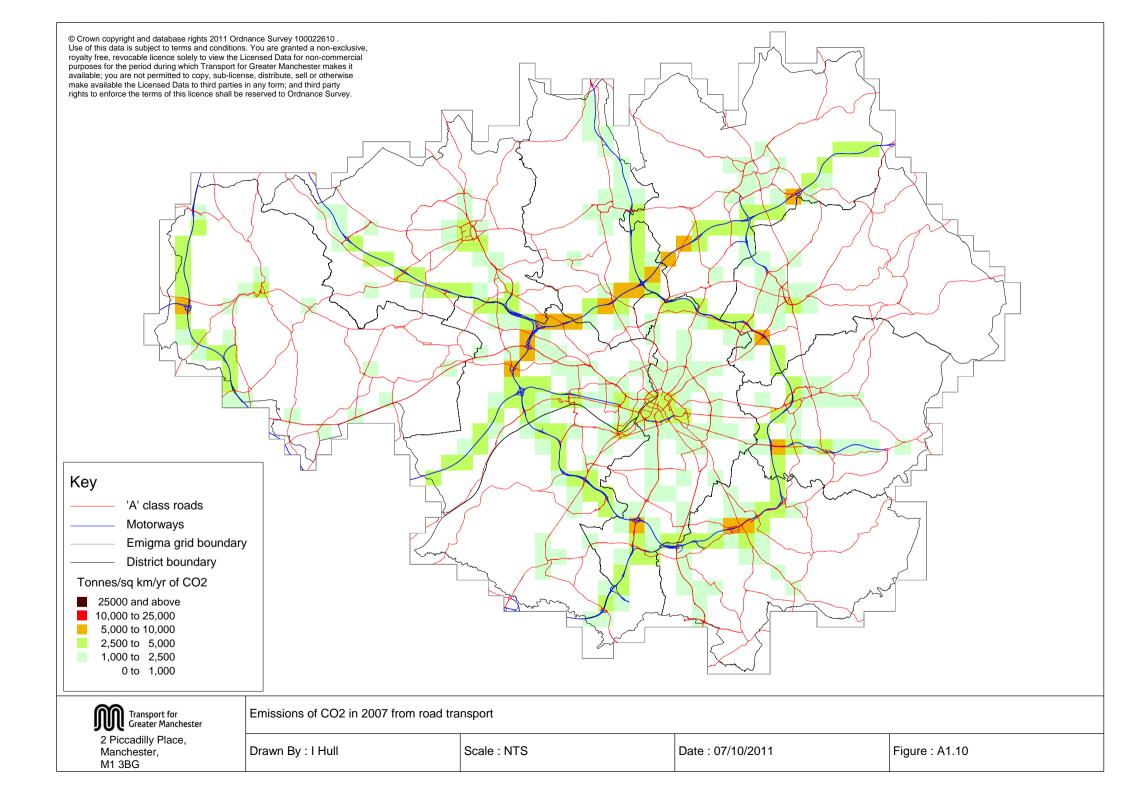

- Figure A1.1 Total emissions of NO_X in 2007
- Figure A1.2 Total emissions of CO₂ in 2007
- Figure A1.3 Total emissions of SO₂ in 2007
- Figure A1.4 Total emissions of VOCs in 2007
- Figure A1.5 Total emissions of PM₁₀ in 2007
- Figure A1.6 Total emissions of CO in 2007
- Figure A1.7 Total emissions of Benzene in 2007
- Figure A1.8 Total emissions of 1, 3 Butadiene in 2007
- Figure A1.9 Emissions of NO_X in 2007 from road transport
- Figure A1.10 Emissions of CO₂ in 2007 from road transport
- Figure A1.11 Emissions of SO₂ in 2007 from road transport
- Figure A1.12 Emissions of VOCs in 2007 from road transport
- Figure A1.13 Emissions of PM₁₀ in 2007 from road transport
- Figure A1.14 Emissions of CO in 2007 from road transport
- Figure A1.15 Emissions of Benzene in 2007 from road transport
- Figure A1.16 Emissions of 1, 3 Butadiene in 2007 from road transport
- Figure A1.17 Emissions of CO₂ in 2007 from electricity generation at point of use

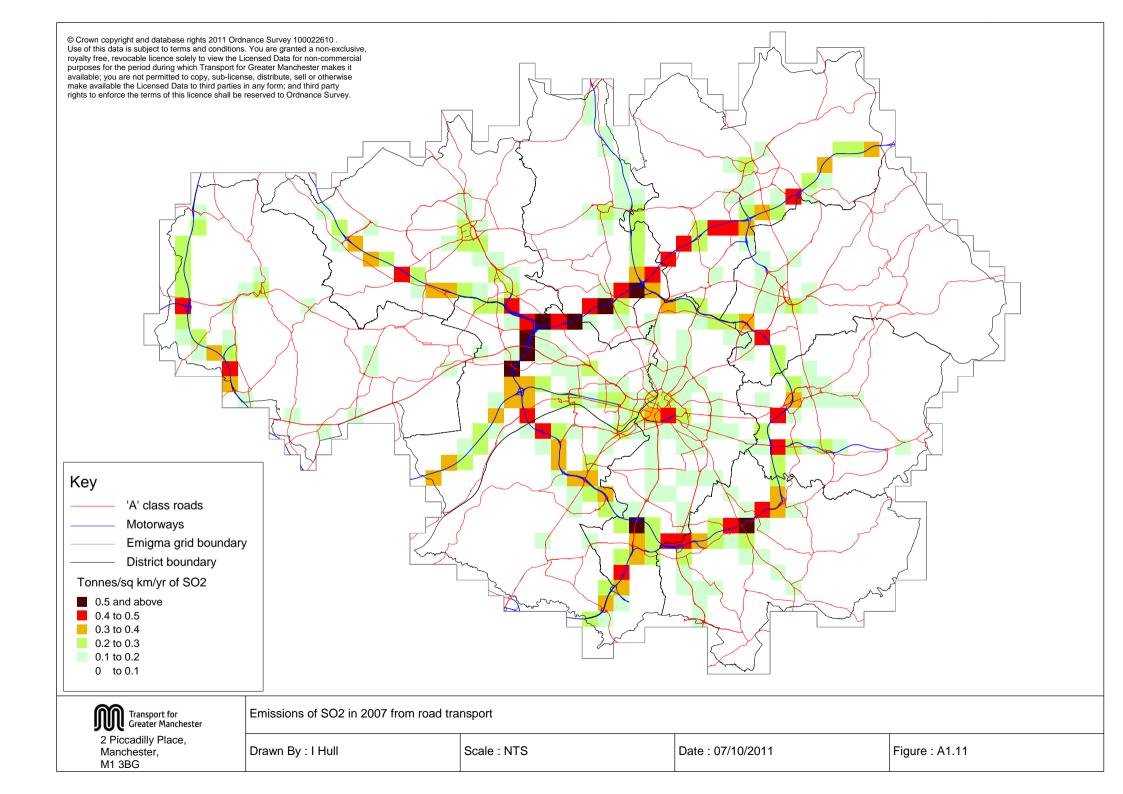


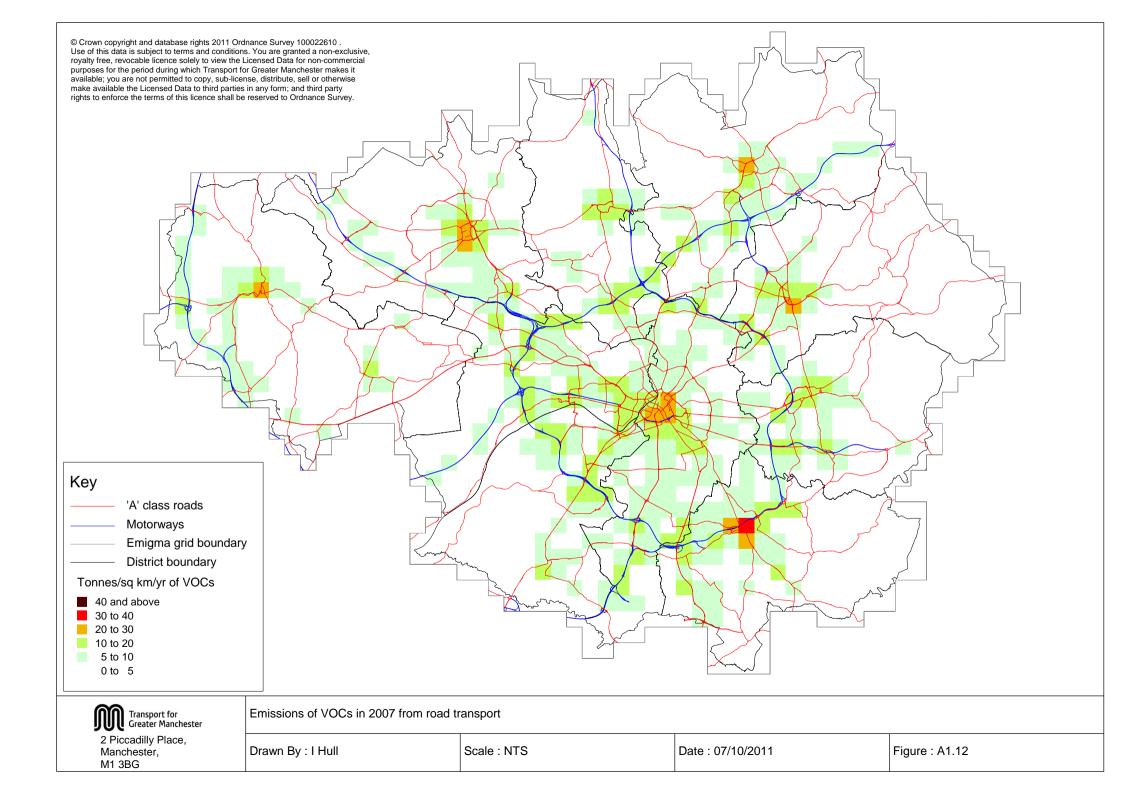


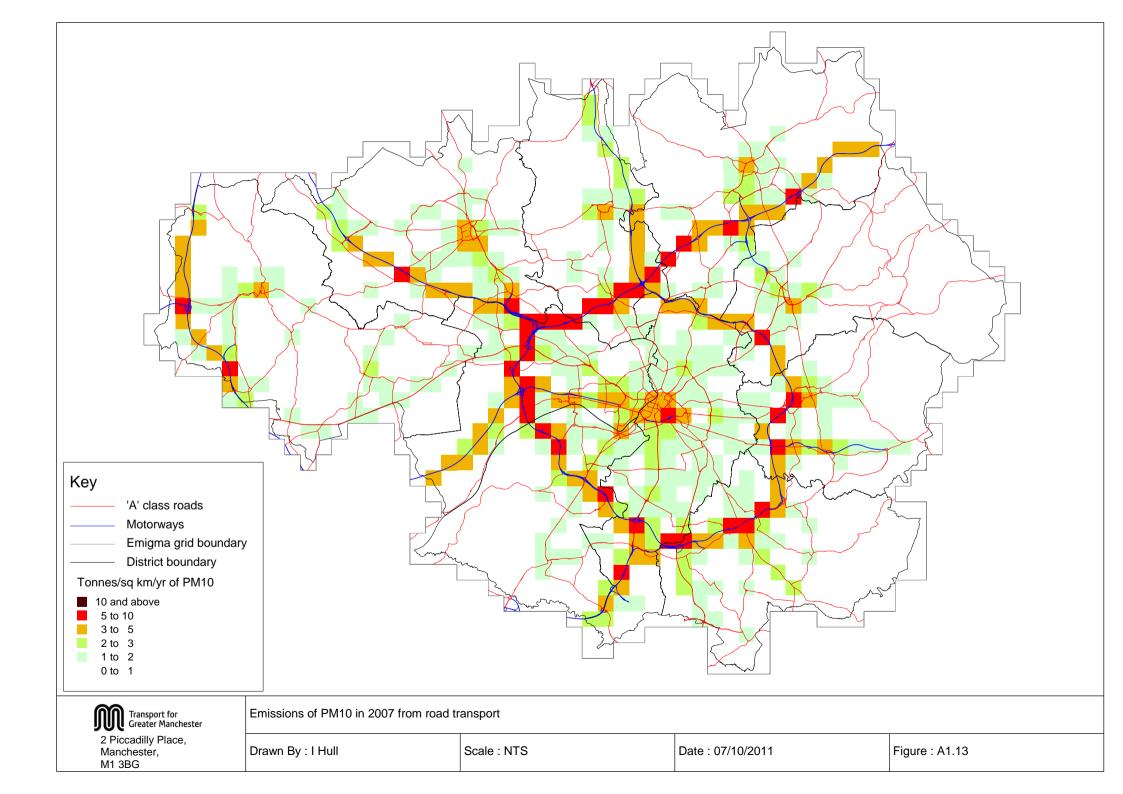


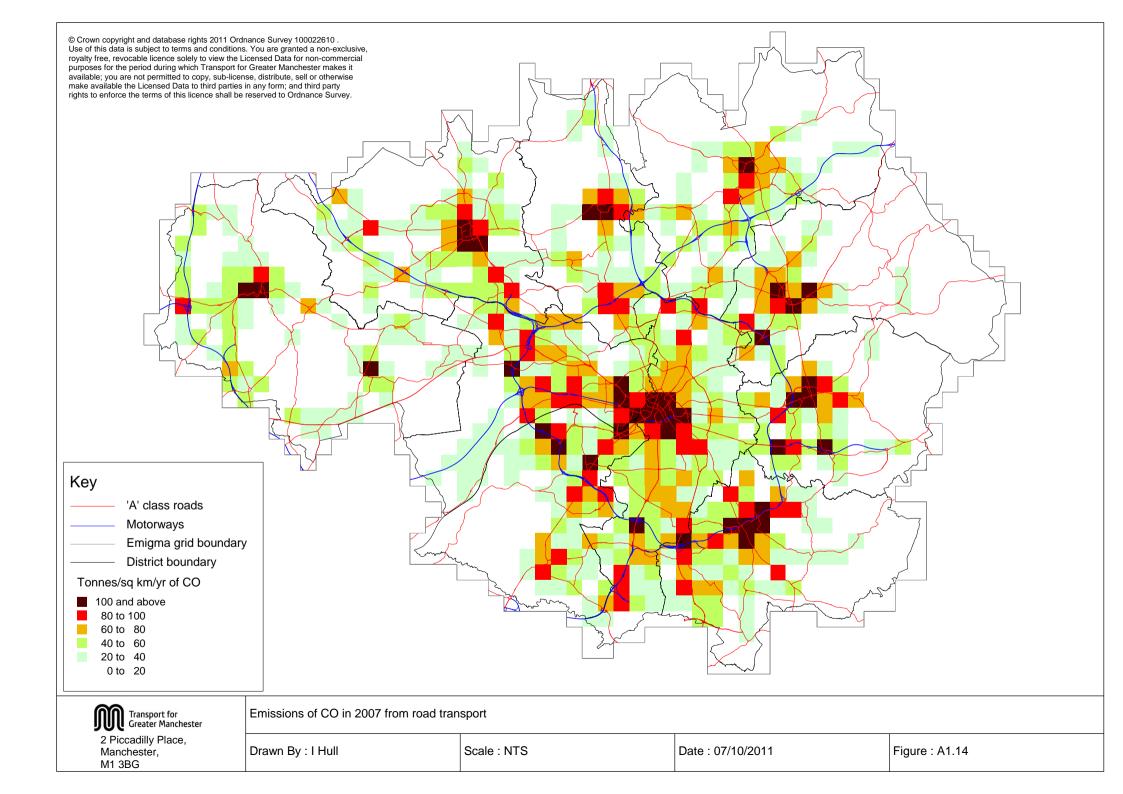


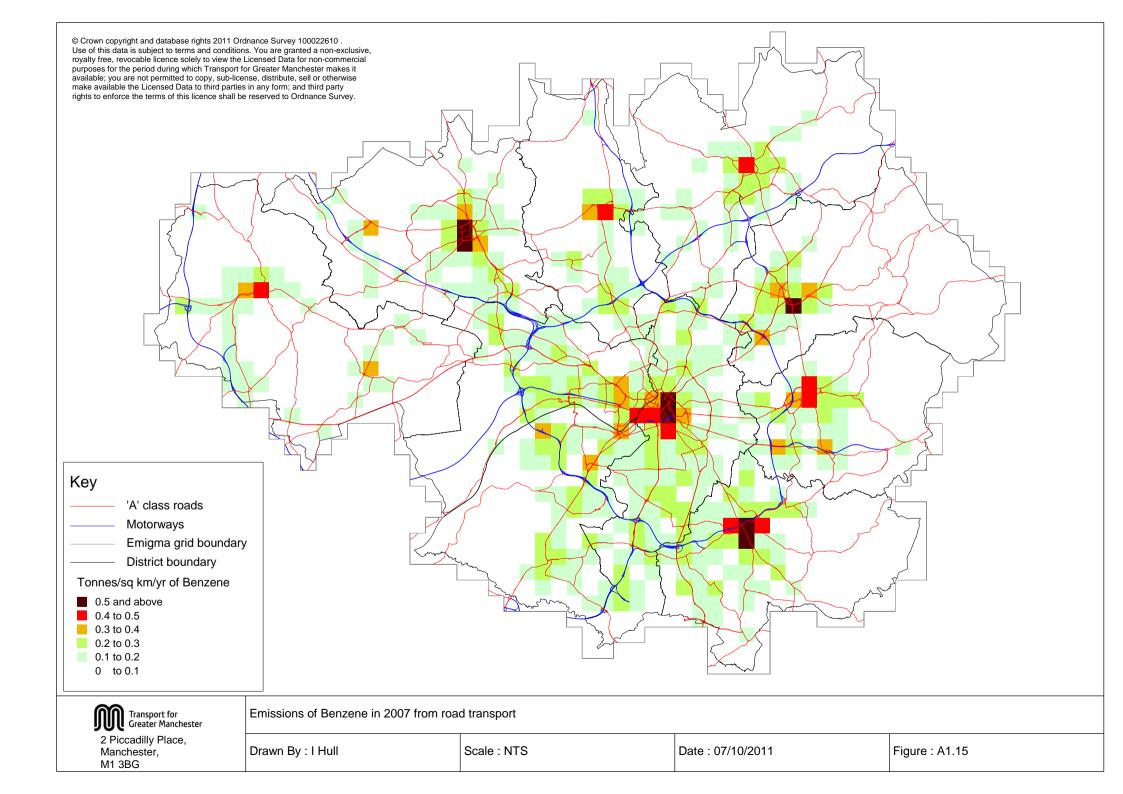


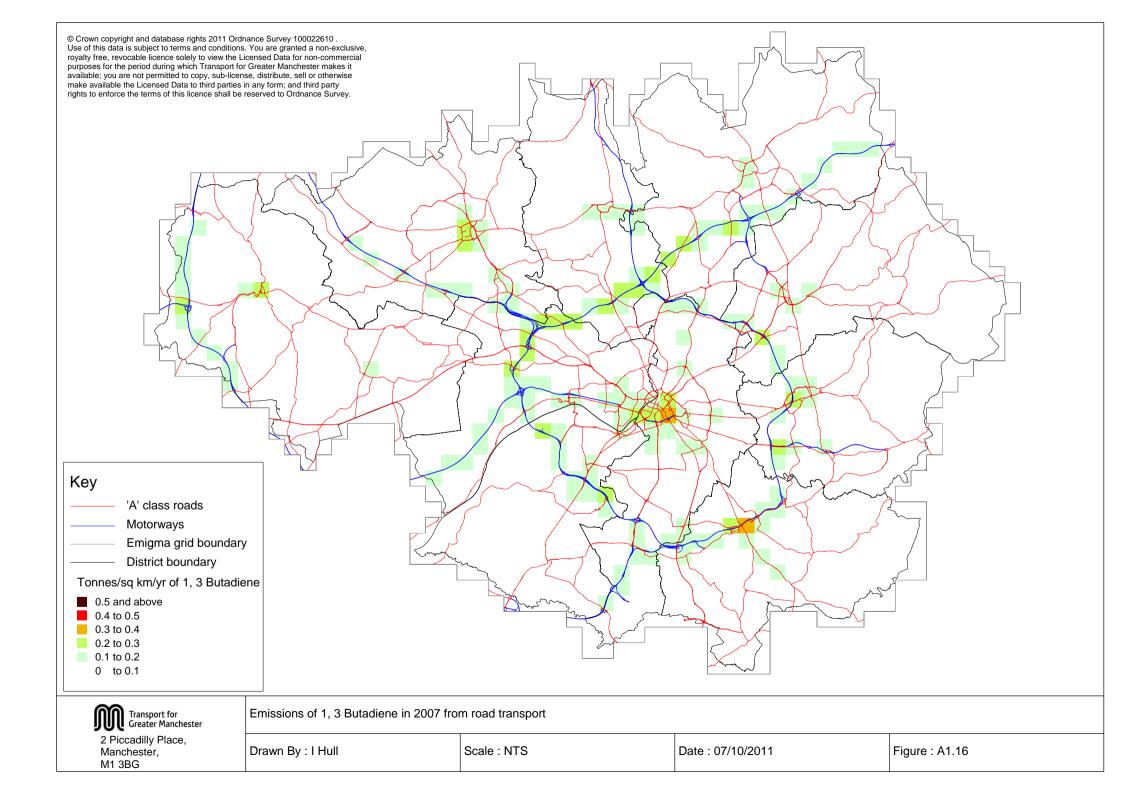


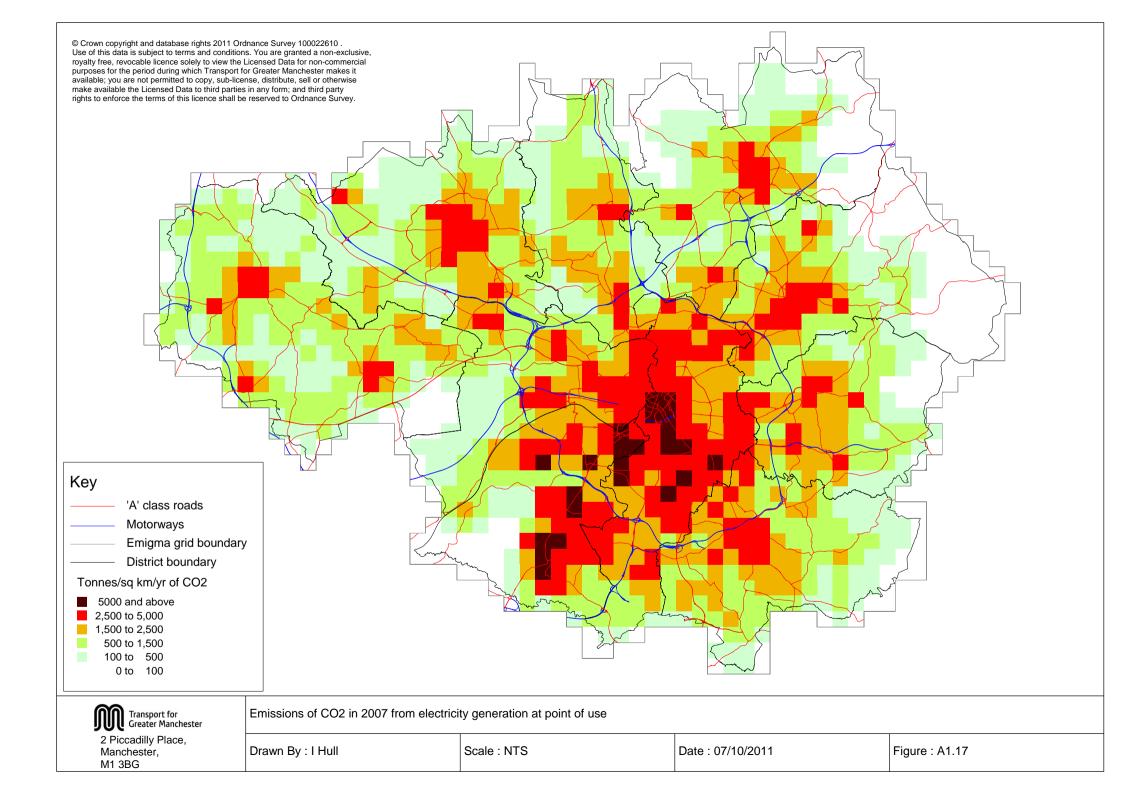












Appendix 2 Emission Factors and Road Traffic Expansion factors

The following tables show the emission factors and road traffic expansion factors used during the update of the road source data 3,4

Table A2.1	Speed Emission Factors for Motor Cycles
Table A2.2	Speed Emission Factors for Petrol Cars
Table A2.3	Speed Emission Factors for Diesel Cars
Table A2.4	Speed Emission Factors for Petrol LGVS
Table A2.5	Speed Emission Factors for Diesel LGVS
Table A2.6	Speed Emission Factors for Rigid HGVS
Table A2.7	Speed Emission Factors for Articulated HGVS
Table A2.8	Speed Emission Factors for Buses
Table A2.9	Fleet Composition Data
Table A2.10	Road Traffic Expansion Factors
Table A2.11	Fleet-Weighted Cold Start Emission Factors

Table A2.12 Fleet-Weighted Hot Soak Emission Factors

¹ The VOCs speed emission factors for cars, LGVs, OGVs and buses include methane.

The NAEI website does not provide fleet composition data for motorcycles, or speed emission factor coefficients for SO₂, although road transport represents only a minor source of UK sulphur emissions. As an alternative, the speed emission factors for motorcycles and SO₂ have been estimated using the drive-cycle factors from Reference 11, applying the urban driving factors for speeds up to 60 kph and the motorway factors for speeds greater than 60 kph

Table A2.1

2007 Spec	2007 Speed Emission Factors for Motor Cycles (g/km) ²							
Speed km/hour	NO _x	PM ₁₀	со	VOCs				
5	0.134000	0.134570	12.292000	2.762000				
10	0.134000	0.134570	12.292000	2.762000				
15	0.134000	0.134570	12.292000	2.762000				
20	0.134000	0.134570	12.292000	2.762000				
25	0.134000	0.134570	12.292000	2.762000				
30	0.134000	0.134570	12.292000	2.762000				
35	0.134000	0.134570	12.292000	2.762000				
40	0.134000	0.134570	12.292000	2.762000				
45	0.134000	0.134570	12.292000	2.762000				
50	0.134000	0.134570	12.292000	2.762000				
55	0.134000	0.134570	12.292000	2.762000				
60	0.134000	0.134570	12.292000	2.762000				
65	0.418000	0.164570	22.400000	0.718000				
70	0.418000	0.164570	22.400000	0.718000				
75	0.418000	0.164570	22.400000	0.718000				
80	0.418000	0.164570	22.400000	0.718000				
85	0.418000	0.164570	22.400000	0.718000				
90	0.418000	0.164570	22.400000	0.718000				
95	0.418000	0.164570	22.400000	0.718000				
100	0.418000	0.164570	22.400000	0.718000				
105	0.418000	0.164570	22.400000	0.718000				
110	0.418000	0.164570	22.400000	0.718000				
115	0.418000	0.164570	22.400000	0.718000				
Speed km/hour	Benzene	1,3 Butadiene	CO ₂ as C	SO ₂ ²				
5	0.080000	0.060000	34.000000	0.004000				
10	0.080000	0.060000	34.000000	0.004000				
15	0.080000	0.060000	34.000000	0.004000				
20	0.080000	0.060000	34.000000	0.004000				
25	0.080000	0.060000	34.000000	0.004000				
30	0.080000	0.060000	34.000000	0.004000				
35	0.080000	0.060000	34.000000	0.004000				
40	0.080000	0.060000	34.000000	0.004000				
45	0.080000	0.060000	34.000000	0.004000				
50	0.080000	0.060000	34.000000	0.004000				
55	0.080000	0.060000	34.000000	0.004000				
60	0.080000	0.060000	34.000000	0.004000				
65	0.020000	0.010000	47.000000	0.005540				
70	0.020000	0.010000	47.000000	0.005540				
75	0.020000	0.010000	47.000000	0.005540				
80	0.020000	0.010000	47.000000	0.005540				
85	0.020000	0.010000	47.000000	0.005540				
90	0.020000	0.010000	47.000000	0.005540				
95	0.020000	0.010000	47.000000	0.005540				
100	0.020000	0.010000	47.000000	0.005540				
105	0.020000	0.010000	47.000000	0.005540				
110	0.020000	0.010000	47.000000	0.005540				
			47.000000	0.005540				
115	0.020000	0.010000	4/(####	() ()(1224)				

Table A2.2

2007 Speed	d Emission Fact	ors for Petrol Cars	(g/km)	
Speed km/hour	NO _X	PM ₁₀	СО	VOCs ¹
5	0.251495	0.058828	7.088015	0.565978
10	0.228632	0.055611	3.854812	0.334305
15	0.218948	0.054278	2.788777	0.259386
20	0.214075	0.053442	2.245025	0.218450
25	0.211924	0.052829	1.904948	0.190811
30	0.211680	0.052350	1.666177	0.169978
35	0.212983	0.051969	1.486218	0.153261
40	0.215669	0.051669	1.344487	0.139345
45	0.219671	0.051444	1.229957	0.127518
50	0.224972	0.051291	1.136304	0.117361
55	0.231586	0.051209	1.059743	0.108618
60	0.239547	0.051199	0.997951	0.101123
65	0.248896	0.051263	0.949498	0.094766
70	0.259684	0.051404	0.913528	0.089477
75	0.271968	0.051624	0.889559	0.085206
80	0.285807	0.051926	0.877370	0.081921
85	0.301263	0.052314	0.876919	0.079603
90	0.318401	0.052790	0.888298	0.078238
95	0.337285	0.053358	0.911691	0.077822
100	0.357982	0.054022	0.947356	0.078354
105	0.380560	0.054785	0.995606	0.079835
110	0.405087	0.055650	1.056793	0.082270
115	0.431631	0.056622	1.131305	0.085668
Speed km/hour	Benzene	1,3 Butadiene	CO₂ as C	SO ₂ ²
5	0.013960	0.006664	141.010210	0.005432
10	0.007834	0.004046	85.267540	0.005432
15	0.005994	0.003157	66.730332	0.005432
20	0.005017	0.002664	57.413445	0.005432
25	0.004366	0.002328	51.787793	0.005432
30	0.003881	0.002074	48.036334	0.005432
35	0.003495	0.001870	45.391072	0.005432
40	0.003176	0.001700	43.474139	0.005432
45	0.002908	0.001554	42.079955	0.005432
50	0.002680	0.001429	41.088661	0.005432
55	0.002486	0.001321	40.426964	0.005432
60	0.002322	0.001228	40.048649	0.005432
65	0.002185	0.001149	39.924118	0.006312
70	0.002075	0.001082	40.034431	0.006312
75	0.001988	0.001028	40.367738	0.006312
80	0.001926	0.000985	40.917057	0.006312
85	0.001886	0.000954	41.678835	0.006312
90	0.001869	0.000935	42.651994	0.006312
95	0.001875	0.000933	43.837277	0.006312
100	0.001903	0.000927	45.236791	0.006312
105	0.001953	0.000930	46.853681	0.006312
110	0.001933	0.000943	48.691894	0.006312
	0.002020	0.00001	10.001007	0.000012

Table A2.3

2007 Speed Emission Factors for Diesel Cars (g/km)						
Speed km/hour	NO _x	PM ₁₀	СО	VOCs ¹		
5	1.018148	0.129699	0.775888	0.249524		
10	0.793596	0.104966	0.557348	0.145599		
15	0.688315	0.096550	0.434884	0.108581		
20	0.622702	0.092686	0.358961	0.088392		
25	0.574233	0.090031	0.303116	0.074999		
30	0.535394	0.087727	0.258157	0.065069		
35	0.503204	0.085536	0.220253	0.057182		
40	0.476394	0.083405	0.187567	0.050639		
45	0.454448	0.081350	0.159118	0.045061		
50	0.437229	0.079415	0.134341	0.040227		
55	0.424801	0.077655	0.112887	0.036007		
60	0.417345	0.076130	0.094533	0.032317		
65	0.415115	0.074901	0.079130	0.029109		
70	0.418408	0.074034	0.066573	0.026352		
75	0.427554	0.073593	0.056789	0.024030		
80	0.442903	0.073641	0.049725	0.022135		
85	0.464819	0.074243	0.045340	0.020666		
90	0.493675	0.075465	0.043607	0.019629		
95	0.529855	0.077370	0.044502	0.019029		
100	0.573747	0.080022	0.048009	0.018878		
105	0.625742	0.083487	0.054114	0.019187		
110	0.686236	0.087828	0.062808	0.019969		
115	0.755628	0.093109	0.074083	0.021240		
Speed km/hour	Benzene	1,3 Butadiene	CO ₂ as C	SO ₂ ²		
5	0.004255	0.002085	115.477887	0.003326		
10	0.002483	0.001216	76.313342	0.003326		
15	0.001852	0.000907	62.037651	0.003326		
20	0.001507	0.000738	54.488693	0.003326		
25	0.001279	0.000627	49.660499	0.003326		
30	0.001110	0.000544	46.225295	0.003326		
35	0.000975	0.000478	43.629442	0.003326		
40	0.000864	0.000423	41.608678	0.003326		
45	0.000768	0.000376	40.026575	0.003326		
50	0.000686	0.000336	38.810215	0.003326		
55	0.000614	0.000301	37.921121	0.003326		
60	0.000551	0.000270	37.340799	0.003326		
65	0.000496	0.000243	37.062993	0.002868		
70	0.000449	0.000220	37.089285	0.002868		
75	0.000410	0.000201	37.426459	0.002868		
80	0.000377	0.000185	38.084866	0.002868		
85	0.000352	0.000173	39.077365	0.002868		
90	0.000335	0.000164	40.418625	0.002868		
95	0.000325	0.000159	42.124641	0.002868		
100	0.000322	0.000158	44.212406	0.002868		
105	0.000327	0.000160	46.699664	0.002868		
110	0.000341	0.000167	49.604747	0.002868		
-		0.000177	52.946439	0.002868		

Table A2.4

_00. op00.	a Elillosioli i dol	ors for Petrol LGV	o (g/kiii)	
Speed km/hour	NO _x	PM ₁₀	со	VOCs ¹
5	0.228500	0.056518	4.807910	0.573714
10	0.227268	0.054448	2.925526	0.281941
15	0.226363	0.053579	2.274094	0.206718
20	0.225873	0.053010	1.918087	0.170153
25	0.225887	0.052566	1.678044	0.146863
30	0.226493	0.052197	1.496524	0.129810
35	0.227781	0.051886 1	1.350461	0.116331
40	0.229838	0.051629	1.229574	0.105214
45	0.232754	0.051430	1.129229	0.095835
50	0.236618	0.051293	1.047608	0.087846
55	0.241517	0.051224	0.984423	0.081039
60	0.247541	0.051232	0.940275	0.075285
65	0.254778	0.051326	0.916312	0.070502
70	0.263318	0.051512	0.914034	0.066635
75	0.273248	0.051801	0.935174	0.063649
80	0.284657	0.052202	0.981626	0.061521
85	0.297635	0.052723	1.055395	0.060238
90	0.312269	0.053374	1.158571	0.059792
95	0.328649	0.054165	1.293302	0.060179
100	0.346863	0.055104	1.461781	0.061398
105	0.367000	0.056201	1.666236	0.063452
110	0.389149	0.057465	1.908921	0.066345
115	0.413398	0.058906	2.192111	0.070082
Speed				
km/hour	Benzene	1,3 Butadiene	CO₂ as C	SO₂ ²
5	0.015190	0.006177	233.574745	0.007522
10	0.006607	0.003273	117.225121	0.007522
15	0.004641	0.002455	92.935789	0.007522
20	0.003773	0.002034	82.444399	0.007522
25	0.003260	0.001755	76.078839	0.007522
30	0.002904	0.001545	71.465056	0.007522
35	0.002634	0.001376	67.807999	0.007522
40	0.002417	0.001235	64.794018	0.007522
45	0.002238	0.001115	62.290613	0.007522
50	0.002088	0.001013	60.244048	0.007522
55	0.001961	0.000925	58.638672	0.007522
60	0.001855	0.000850	57.478807	0.007522
65	0.001767	0.000788	56.779962	0.008512
70	0.001695	0.000738	56.564242	0.008512
75	0.001640	0.000699	56.857821	0.008512
80	0.001600	0.000672	57.689476	0.008512
85	0.001576	0.000655	59.089706	0.008512
90	0.001566	0.000650	61.090177	0.008512
95	0.001571	0.000656	63.723367	0.008512
100	0.001590	0.000672	67.022331	0.008512
105	0.001624	0.000700	71.020545	0.008512
110	0.001673	0.000739	75.751789	0.008512
· -	0.001736	0.000789	81.250077	0.008512

Table A2.5

2007 Speed	d Emission Fact	ors for Diesel LGV	S (g/km)	
Speed km/hour	NO _X	PM ₁₀	СО	VOCs ¹
5	0.962485	0.153838	2.494609	0.406092
10	0.928735	0.146639	1.812876	0.232408
15	0.902813	0.142685	1.190156	0.173973
20	0.875841	0.138616	0.827993	0.144508
25	0.846687	0.134248	0.609415	0.126633
30	0.815749	0.129712	0.473596	0.114561
35	0.783886	0.125206	0.389124	0.105815
40	0.752127	0.120945	0.338546	0.099159
45	0.721583	0.117153	0.311478	0.093908
50	0.693401	0.114053	0.301382	0.089655
55	0.668754	0.111873	0.303948	0.086138
60	0.648824	0.110840	0.316226	0.083186
65	0.634801	0.111181	0.336130	0.080680
70	0.627883	0.113124	0.362144	0.078538
75	0.629268	0.116895	0.393145	0.076697
80	0.640157	0.122724	0.428282	0.075114
85	0.661755	0.130836	0.426262	0.073754
90	0.695266	0.141461	0.508487	0.072592
95	0.741894	0.154826	0.552639	0.071608
100	0.802846	0.171159	0.599033	0.070788
105	0.879328	0.190687	0.647406	0.070118
110	0.972547	0.213639	0.697548	0.069590
115	1.083711	0.240241	0.749283	0.069196
Speed km/hour	Benzene	1,3 Butadiene	CO₂ as C	SO₂ ²
5	0.007829	0.003835	152.470125	0.006744
10	0.004480	0.002195	109.162112	0.006744
15	0.003354	0.001643	93.403472	0.006744
20	0.002786	0.001365	84.448316	0.006744
25	0.002441	0.001196	78.127245	0.006744
30	0.002208	0.001082	73.101911	0.006744
35	0.002040	0.000999	68.851914	0.006744
40	0.001912	0.000936	65.165639	0.006744
45	0.001810	0.000887	61.969331	0.006744
50	0.001728	0.000847	59.258387	0.006744
55	0.001661	0.000814	57.066023	0.006744
60	0.001604	0.000786	55.447555	0.006744
65	0.001555	0.000762	54.471924	0.008518
70	0.001514	0.000742	54.216840	0.008518
75	0.001479	0.000742	54.765865	0.008518
80	0.001479	0.000724	56.206591	0.008518
85	0.001448	0.000709	58.629452	0.008518
00	0.001422	0.000686	62.126942	0.008518
	บ.บบ เ อฮฮ	0.00000		0.008518
90		U UUUEZE		
90 95	0.001380	0.000676	66.793069	
90 95 100	0.001380 0.001365	0.000669	72.722979	0.008518
90 95 100 105 110	0.001380			

Table A2.6

2007 Spee	d Emission Fact	ors for Rigid HGV	6 (g/km)	
Speed km/hour	NO _x	PM ₁₀	СО	VOCs ¹
5	13.627929	0.516762	4.805052	1.910237
10	9.659871	0.354370	2.895324	1.234582
15	7.700703	0.279845	1.916359	0.870563
20	6.590723	0.237825	1.464892	0.678901
25	5.879470	0.210682	1.219331	0.564216
30	5.387863	0.191632	1.069276	0.489432
35	5.032246	0.177544	0.969800	0.437799
40	4.768576	0.166780	0.899833	0.400738
45	4.571541	0.158403	0.848380	0.373428
50	4.425589	0.151838	0.809216	0.352955
55	4.320658	0.146713	0.778581	0.337459
60	4.249963	0.142778	0.754087	0.325698
65	4.208774	0.139858	0.734152	0.316810
70	4.193698	0.137826	0.717687	0.310181
75	4.202250	0.136591	0.703924	0.305358
80	4.232570	0.136083	0.692305	0.302003
85	4.283246	0.136250	0.682416	0.299857
90	4.353192	0.137049	0.673944	0.298720
95	4.441563	0.138451	0.666647	0.298432
100	4.547696	0.140427	0.660339	0.298867
105	4.547696	0.140427	0.660339	0.298867
110	4.547696	0.140427	0.660339	0.298867
115	4.547696	0.140427	0.660339	0.298867
Speed km/hour	Benzene	1,3 Butadiene	CO ₂ as C	SO ₂ ²
5	0.001284	0.060551	434.452233	0.010000
10	0.000830	0.039134	345.813019	0.010000
15	0.000585	0.027595	267.739879	0.010000
20	0.000365	0.021520	231.202673	0.010000
25	0.000430	0.021320	211.115453	0.010000
30	0.000379	0.0175514	198.505551	0.010000
35	0.000329	0.013877	189.810018	0.010000
40	0.000294	0.012703	183.449665	0.010000
45	0.000209	0.012703	178.674841	0.010000
50	0.000237	0.01188	175.122454	0.010000
55	0.000237	0.010697	173.122434	0.010000
60	0.000227	0.010324	171.124981	0.010000
65	0.000219	0.010042	170.621858	0.010000
70	0.000213	0.009832	170.021030	0.010000
75 75	0.000209	0.009679	171.155404	0.010000
80	0.000203	0.009573	175.597278	0.010000
	0.000203	0.009505	179.671008	0.010000
85 90	0.000202	0.009469	185.103998	0.010000
05	0.000201	0.009460	191.995969 200.450174	0.010000 0.010000
95	0.000004			U U I (((((((((((((((((
100	0.000201	0.009474		
	0.000201 0.000201 0.000201	0.009474 0.009474 0.009474	200.450174 200.450174 200.450174	0.010000 0.010000

Table A2.7

2007 Speed Emission Factors for Articulated HGVS (g/km)						
Speed km/hour	NO _x	PM ₁₀	СО	VOCs ¹		
5	27.905619	1.156765	12.086546	4.690861		
10	19.812957	0.789458 7.294748 3		3.058458		
15	15.813500	0.615499	4.823450	2.167119		
20	13.542903	0.516498	3.685238	1.693673		
25	12.085887	0.452211	3.067053	1.408919		
30	11.077812	0.406926	2.689763	1.222676		
35	10.348047	0.373345	2.439873	1.093875		
40	9.806635	0.347637	2.264206	1.001367		
45	9.401795	0.327600	2.135035	0.933211		
50	9.101668	0.311881	2.036678	0.882170		
55	8.885604	0.299604	1.959674	0.843607		
60	8.739649	0.290178	1.898019	0.814421		
65	8.654045	0.283186	1.847733	0.792454		
70	8.621774	0.278332	1.806086	0.776166		
75	8.637669	0.275395	1.771150	0.764423		
80	8.697846	0.274210	1.741526	0.756374		
85	8.799336	0.274648	1.716175	0.751367		
90	8.939837	0.276613	1.694315	0.748896		
95	9.117542	0.280024	1.675341	0.748561		
100	9.331014	0.284821	1.658784	0.750041		
105	9.331014	0.284821	1.658784	0.750041		
110	9.331014	0.284821	1.658784	0.750041		
115	9.331014	0.284821	1.658784	0.750041		
Speed km/hour	Benzene	1,3 Butadiene	CO₂ as C	SO ₂ ²		
5	0.003007	0.141780	1008.770540	0.020000		
10	0.001961	0.092441	806.355701	0.020000		
15	0.001389	0.065501	624.876110	0.020000		
20	0.001086	0.051191	540.085930	0.020000		
25	0.000903	0.042584	493.532767	0.020000		
30	0.000784	0.036955	464.318875	0.020000		
35	0.000701	0.033062	444.161578	0.020000		
40	0.000642	0.030266	429.399434	0.020000		
45	0.000598	0.028206	418.300839	0.020000		
50	0.000566	0.026663	410.032195	0.020000		
55	0.000541	0.025498	404.215380	0.020000		
60	0.000522	0.024616	400.719884	0.020000		
65	0.000508	0.023952	399.557666	0.020000		
70	0.000498	0.023459	400.826614	0.020000		
75	0.000490	0.023105	404.678553	0.020000		
80	0.000485	0.022861	411.300336	0.020000		
85	0.000482	0.022710	420.902237	0.020000		
90	0.000480	0.022635	433.710610	0.020000		
95	0.000480	0.022625	449.963086	0.020000		
100	0.000481	0.022670	469.905381	0.020000		
105	0.000481	0.022670	469.905381	0.020000		
110	0.000481	0.022670	469.905381	0.020000		
	0.000701	5.022010	100.00001	0.020000		

Table A2.8

2007 Spee	d Emission Fact	ors for Buses (g/kr	m)	
Speed km/hour	NO _x	PM ₁₀	СО	VOCs ¹
5	14.718350	0.480291	5.505493	1.923758
10	10.426959	59 0.308941 3.114539		1.064554
15	8.384098	0.240266	2.077513	0.704074
20	7.219552	0.203235	1.585770	0.531755
25	6.462226	0.179927	1.309310	0.434457
30	5.929435	0.163853	1.135887	0.373399
35	5.536789	0.152108	1.019123	0.332330
40	5.240142	0.143196	0.936869	0.303366
45	5.014219	0.136272	0.877384	0.282257
50	4.843538	0.130823	0.833946	0.266517
55	4.718098	0.126517	0.802479	0.254605
60	4.631169	0.123132	0.780402	0.245513
65	4.631169	0.123132	0.780402	0.245513
70	4.631169	0.123132	0.780402	0.245513
75	4.631169	0.123132	0.780402	0.245513
80	4.631169	0.123132	0.780402	0.245513
85	4.631169	0.123132	0.780402	0.245513
90	4.631169	0.123132	0.780402	0.245513
95	4.631169	0.123132	0.780402	0.245513
100	4.631169	0.123132	0.780402	0.245513
105	4.631169	0.123132	0.780402	0.245513
110	4.631169	0.123132	0.780402	0.245513
115	4.631169	0.123132	0.780402	0.245513
Speed km/hour	Benzene	1,3 Butadiene	CO ₂ as C	SO ₂ ²
5	0.001195	0.056335	435.206798	0.030000
10	0.000661	0.031174	339.109406	0.030000
15	0.000437	0.020618	260.971656	0.030000
20	0.000330	0.015572	223.650007	0.030000
25	0.000330	0.013372	202.787389	0.030000
30	0.000270	0.010935	189.580468	0.030000
35	0.000232	0.009732	180.476238	0.030000
40	0.000200	0.009732	173.869655	0.030000
45	0.000100	0.008266	168.980602	0.030000
50	0.000175	0.007805	165.418302	0.030000
55	0.000100	0.007456	162.992259	0.030000
60	0.000158	0.007430	161.622388	0.030000
65	0.000153	0.007190	161.622388	0.010000
70	0.000153	0.007190	161.622388	0.010000
75 75	0.000153	0.007190	161.622388	0.010000
80	0.000153	0.007190	161.622388	0.010000
85	0.000153	0.007190	161.622388	0.010000
UU	0.000103		161.622388	0.010000
	0 000152	(1) (1) (1) (1) (1)	101.077.300	0.010000
90	0.000153	0.007190		0.010000
90 95	0.000153	0.007190	161.622388	0.010000
90 95 100	0.000153 0.000153	0.007190 0.007190	161.622388 161.622388	0.010000
90 95 100 105 110	0.000153	0.007190	161.622388	

Table A2.9

2007 Fleet Composition Data				
Vehicle Type	Emission Standard	Percentage		
Petrol Cars	ECE 15.01 ECE 15.02 ECE 15.03 ECE 15.04 + FAILED CATS Euro I Euro II Euro IV	0.00 0.00 0.00 6.66 7.62 21.19 16.65 47.88		
% by engine size	< 1.4 1.4 - 2.0 > 2.0	47.3 46.0 6.7		
% Petrol Cars Diesel Cars	Pre-Euro I Euro I Euro II Euro III Euro III + particulate trap Euro IV Euro IV + particulate trap	77.62 0.46 8.40 17.10 38.36 7.49 21.14 7.05		
% by engine size	< 2.0 > 2.0	84.3 15.7		
% Diesel Cars		22.38		
Petrol LGV % Petrol LGVs	Pre-Euro I Euro I (93/59/EEC) Euro II Euro IV	4.64 5.97 18.73 45.10 25.56 7.17		
Diesel LGV	Pre-Euro I Euro I (93/59/EEC) Euro II Euro III Euro IV	1.61 6.16 26.45 39.40 26.38		
% Diesel LGVs Rigid HGVs	Pre-1988 Pre-Euro I (88/77EEC) Euro I (91/542/EEC) Euro II Euro III Euro IV Euro IV+	92.83 0.00 0.41 4.91 26.59 53.29 14.80 0.00		
% Rigid HGVs (of total HGV)	Motorways Other Roads	42.24 78.65		

	•	
Artic HGVs	Pre-1988	0.00
	Pre-Euro I (88/77EEC)	0.17
	Euro I (91/542/EEC)	2.53
	Euro II	19.73
	Euro III	59.78
	Euro IV	17.78
	Euro IV+	0.00
% Artic HGV(of total	Motorways	57.76
HGV)	Other Roads	21.35
Buses	Pre-1988	1.72
	Pre-Euro I (88/77EEC)	4.45
	Euro I (91/542/EEC)	6.58
	Euro II	28.72
	Euro III	46.05
	Euro IV	12.49
	Euro IV+	0.00
Motorcycles	Motorways	0.38
(as % of cars)	Other Roads	0.73

Notes

The traffic flows that are input to EMIGMA do not include motorcycles. Motorcycle flows are treated as additional volumes, expressed as a percentage of the input car flows.

The Petrol/Diesel splits for cars and LGVs have been obtained from Transport Statistics Great Britain 2007 (Reference 8).

The Rigid/Articulated HGV percentages are used to convert from assigned OGV flows to Rigid/Artic HGV volumes, by road type.

Table A2.10

2007 EMIGMA Road Traffic Expansion Factors

Hour to Period Factors

	Motorways				Other Roads	S
	AM Peak	Off-Peak	PM Peak	AM Peak	Off-Peak	PM Peak
Cars/Motorcycles	2.833	9.624	2.739	2.582	9.311	2.745
LGVS	3.113	9.624	2.999	3.087	9.311	3.006
OGVS	3.156	9.624	3.262	3.041	9.311	3.383
Buses	3.214	9.624	3.162	2.903	9.311	3.098

Weekday to Saturday/Sunday/Bank Holiday Factors

	Motorways	Other Roads
Weekday Off-Peak Period - Saturday	1.282	1.428
Weekday Off-Peak Period - Sunday	1.190	1.179
Weekday Off-Peak Period – Bank Holiday	1.190	1.179

Day Factors

Average Weekday – Annual Weekdays	253
Saturday – Annual Saturdays	52
Sunday – Annual Sundays	52
Bank Holiday – Annual Bank Holidays	8

Notes:

AM peak period = 0700-1000 PM peak period = 1600-1900

Off-peak period = 0000-0700 + 1000-1600 + 1900-2400

Table A2.11

2007 Fleet-Weighted Cold Start Emission Factors (g/trip)			
Vehicle Type	Pollutant	Factor	
Petrol Car	NMVOCs CO NO _X Benzene 1,3 Butadiene PM ₁₀	1.482000 18.400000 1.228000 0.062000 0.010000	
Diesel Car	NMVOCs CO NO _X Benzene 1,3 Butadiene PM ₁₀	0.042000 0.182000 0.156000 0.000880 0.000432 0.105000	
Petrol LGV	NMVOCs CO NO _X Benzene 1,3 Butadiene PM ₁₀	1.256000 20.200000 1.283000 0.052000 0.009180	
Diesel LGV	NMVOCs CO NO _X Benzene 1,3 Butadiene PM ₁₀	0.182000 0.430000 0.232000 0.003738 0.001830 0.286000	

Table A2.12

2007 Fleet-Weighted Hot Soak Emission Factors (g/trip)			
Vehicle Type	Pollutant	Factor	
Petrol Car	NMVOCs Benzene	0.722000 0.001988	
Petrol LGV	NMVOCs Benzene	0.724000 0.001978	

Appendix 3 Emission Factors for Domestic and Commercial Combustion

The following tables show the comparison of the 2006 and 2007 emission factors used for the calculation of the domestic and commercial combustion

Table A3.1 Domestic Gas Combustion Emission Factors

Table A3.2 Domestic Coke Combustion Emission Factors

Table A3.3 Domestic Oil Combustion Emission Factors

Table A3.4 Commercial Gas Combustion Emission Factors

Table A3.1

Domestic Gas Combustion Emission Factors					
Pollutant	Factor (kilotonne per Megatherm fuel consumed)		Factor (kilotonne per kWh fuel consumed)		
	2006	2007	2006	2007	
CO ₂	1.50	1.5	5.12e-08	5.12E-08	
CH ₄	5.28e-04	5.28E-04	1.80e-11	1.80E-11	
CO	3.25e-03	3.25E-03	1.11e-10	1.11E-10	
NO	1.06e-05	1.06E-05	3.62e-13	3.62E-13	
NO _X as NO ₂	7.3e-03	7.30E-03	2.49e-10	2.49E-10	
NMVOCs	2.33e-04	2.34E-04	7.95e-12	7.98E-12	
C ₆ H ₆	2.1e-05	2.10E-05	7.17e-13	7.17E-13	
PM ₁₀	5.28e-05	5.28E-05	1.80e-12	1.80E-12	

Notes

Using 1 therm = 105.506MJ = 29.307kWh, 1 megatherm = 29.307e6 kWh

Table A3.2

Domestic Coke Combustion Emission Factors		
Pollutant	Emission factor (kilotonne per Megatonne fuel consumed)	
	2006	2007
CO ₂	761	800
CH ₄	5.8	5.8
CO	119	119
NO	0.117	0.117
NO _X as NO ₂	3	3
NMVOCs	4.9	4.9
C ₆ H ₆	0.217	0.217
PM ₁₀	3	3
SO ₂	16	16

Table A3.3

Domestic Oil Combustion Emission Factors			
Pollutant	Emission factor (kilotonne per M consumed)	Emission factor (kilotonne per Megatonne fuel consumed)	
	2006	2007	
CO ₂	879	879	
CH ₄	0.433	0.433	
CO	0	0	
NO	0.026	0.0262	
NO _X as NO ₂	0	0	
NMVOCs	0.14	0.142	
C ₆ H ₆	6.99-e03	0.0071	
PM ₁₀	0	0	
SO ₂	17	17	

Table A3.4

Commercial Gas Combustion Emission Factors				
Pollutant	Factor (kilotonne per Megatherm fuel consumed)		Factor (kilotonne per kWh fuel consumed)	
	2006	2007	2006	2007
CO ₂	1.5	1.5	5.12e-08	5.12E-08
CH ₄	5.28e-04	5.28E-04	1.80e-11	1.80E-11
CO	1.41e-03	1.36E-03	4.81e-11	4.64E-11
NO	1.06e-05	1.06E-05	3.62e-13	3.62E-13
NO _X as NO ₂	6.62e-03	5.91E-03	2.26e-10	2.02E-10
NMVOCs	2.33e-04	2.34E-04	7.95e-12	7.98E-12
C ₆ H ₆	2.12e-05	2.13E-05	7.23e-13	7.27E-13
PM ₁₀	9.90e-05	8.06E-05	3.38e-12	2.75E-12

Notes

Using 1 therm = 105.506MJ = 29.307kWh, 1 megatherm = 29.307e6 kWh

Appendix 4 Emission Factors for Light Aircraft and Helicopters

Table A5.1 shows the emission factors used for the calculation of the emissions from light aircraft and helicopters from City Airport Manchester

Table A4.1

Light Aircraft Emissio	n Factors				
Aircraft Weight categories	Aircraft Engine Factor assumed Assumed Combined Emis		r		
			НС	СО	NO _x
Aircraft upto 450kg (Microlights)	-	Rotax 912	46.8	940	33
Aircraft 451kg - 1200kg	-	Lycoming IO- 360-A1B6	102	4922	5
Helicopters < 1200kg (Piston)	Enstrom 280c	HIO-360	102	6591	14
Helicopters > 1200kg (Turbine)	Eurocopter AS 350 Ecureuil	Arriel 1B	294	375	129

Notes

LTO refers to Landing and Take Off

Appendix 5 Emission Factors for Agriculture

Table A5.1 shows the emission factors used for the calculation of the methane emissions from livestock

Table A5.1

Methane Emission Factors				
Description	Enteric Fermentation	Manure Management	Combined Emission Factor	
Dairy cows	100	14	114	
Other cattle	48	6	54	
Pigs	1.5	3	4.5	
Sheep	8	0.19	8.19	
Goats	5	0.12	5.12	
Poultry	Not relevant	0.078	0.078	

Notes

Emission factors in kilograms of CH₄ per animal

Appendix 6 Emission Factors for Rail

Table A6.1 shows the emission factors for each train class. These were obtained from the Rail Emission Model report on the DfT website (Reference 22)

Table A6.1

Rail Emission Factors						
Train type (class)	CO ₂	SO ₂	VOCs	СО	PM ₁₀	NO _x
Class 37	11270	14.3	12.1	24.5	5.1	51.8
Class 47	16723	21.3	30.8	26.1	5.1	80.1
Class 56	21441	27.3	21.6	43.2	5.1	129.6
Class 58	21441	27.3	11.6	22.5	5.1	103.5
Class 60	20154	25.7	10.4	21.6	4.7	129.6
Class 66	19147	24.4	17.3	6.8	2.9	120
Class 67	9277	11.8	10.6	3.8	1.6	66.7
Class 47+7 passenger coaches	9764	12.4	11.1	39.9	5.1	127.6
Class 101 (1PC + 1TC)	2606	3.3	2.5	2.6	0.9	26.5
Class 116 (2PC + 0TC)	2420	3.1	2.3	2.4	0.8	24.6
Class 117 (2PC + 1TC)	3351	4.3	3.2	3.4	1.1	34.1
Class 121 (1PC + 0TC)	1564	2	1.5	1.6	0.5	15.9
Class 122 (1PC + 0TC)	1713	2.2	1.7	1.7	0.6	17.4
IC125 (2PC)	12170	31	29.1	56.2	17	194.8
Class 141/1 (2PC + 0TC)	2085	2.7	2	2.1	0.7	21.2
Class 143/6 (2PC + 0TC)	2011	2.6	1.9	2	0.7	20.5
Class 144 (2PC + 0TC)	1862	2.4	1.8	1.9	0.6	18.9
Class 144 (3PC + 0TC)	2606	3.3	2.5	2.6	0.9	26.5
Class 150 (3PC + 0TC)	3202	4.1	3.1	3.2	1.1	32.6
Class 153/0 (1PC + 0TC)	1415	1.8	1.4	1.4	0.5	14.4
Class 156 (2PC + 0TC)	2234	2.8	2.2	2.2	0.7	22.7
Class 156 (3PC + 0TC)	2904	3.7	2.8	2.9	1	29.5
Class 158/0 (2PC + 0TC)	2793	3.6	2.7	2.8	0.9	28.4
Class 158/0 (3PC + 0TC)	3723	4.7	3.6	3.7	1.2	37.9
Class 159/0 (3PC + 0TC)	3723	4.7	3.6	3.7	1.2	37.9
Class 165 (2PC + 0TC)	1824	2.3	1.8	1.8	0.6	18.6
Class 165 (3PC + 0TC)	2979	3.8	2.9	3	1	30.3
Class 166/0 (3PC + 0TC)	2979	3.8	2.9	3	1	30.3
Class 221 (1PC + 3TC)	2594	3.3	2.5	8.2	0.9	26.8
Siemens future diesel 3 car unit	5570	7.1	5.4	5.6	1.8	56.7

Notes

Emission factors in g/km

Appendix 7 Associated Files

Table A7.1 shows the associated files that are available for Local Authority use only.

Table A7.1

Associated Files
ESRI\Airport\airport_rectangle.dbf
ESRI\Airport\airport_rectangle.prj
ESRI\Airport\airport_rectangle.shp
ESRI\Airport\airport_rectangle.shx
ESRI\Airport\City Airport 2007 Data.xls
ESRI\Airport\Manchester Airport 2007 Data.xls
ESRI\area\other07_rectangle.dbf
ESRI\area\other07_rectangle.prj
ESRI\area\other07_rectangle.shp
ESRI\area\other07_rectangle.shx
ESRI\Bus stations\Bus Station Departures (Period 6 2008_9).xls
ESRI\Bus stations\BusStationData2007_point.dbf
ESRI\Bus stations\BusStationData2007_point.prj
ESRI\Bus stations\BusStationData2007_point.shp
ESRI\Bus stations\BusStationData2007_point.shx
ESRI\Combustion\gas_com2007_rectangle.dbf
ESRI\Combustion\gas_com2007_rectangle.prj
ESRI\Combustion\gas_com2007_rectangle.shp
ESRI\Combustion\gas_com2007_rectangle.shx
ESRI\Combustion\gas_dom2007_rectangle.dbf
ESRI\Combustion\gas_dom2007_rectangle.prj
ESRI\Combustion\gas_dom2007_rectangle.shp
ESRI\Combustion\gas_dom2007_rectangle.shx
ESRI\Combustion\oil_dom2007_rectangle.dbf
ESRI\Combustion\oil_dom2007_rectangle.prj
ESRI\Combustion\oil_dom2007_rectangle.shp
ESRI\Combustion\oil_dom2007_rectangle.shx
ESRI\Combustion\solidFuel_dom2007_rectangle.dbf
ESRI\Combustion\solidFuel_dom2007_rectangle.prj
ESRI\Combustion\solidFuel_dom2007_rectangle.shp
ESRI\Combustion\solidFuel_dom2007_rectangle.shx
ESRI\Confidential - Point sources\boiler_point.dbf
ESRI\Confidential - Point sources\boiler_point.prj
ESRI\Confidential - Point sources\boiler_point.shp
ESRI\Confidential - Point sources\boiler_point.shx
ESRI\Confidential - Point sources\parta_point.dbf
ESRI\Confidential - Point sources\parta_point.prj
ESRI\Confidential - Point sources\parta_point.shp
ESRI\Confidential - Point sources\parta_point.shx
ESRI\Confidential - Point sources\partb_point.dbf
ESRI\Confidential - Point sources\partb_point.prj
ESRI\Confidential - Point sources\partb_point.shp
ESRI\Confidential - Point sources\partb_point.shx
ESRI\Confidential - Point sources\petrol_point.dbf
ESRI\Confidential - Point sources\petrol_point.prj
ESRI\Confidential - Point sources\petrol_point.shp
ESRI\Confidential - Point sources\petrol_point.shx
,

Associated Files
ESRI\Confidential - Point sources\ReadMe.txt
ESRI\Electricity\Electricity2007_rectangle.dbf
ESRI\Electricity\Electricity2007_rectangle.prj
ESRI\Electricity\Electricity2007_rectangle.shp
ESRI\Electricity\Electricity2007_rectangle.shx
ESRI\Rail\RailLinks_polyline.dbf
ESRI\Rail\RailLinks_polyline.prj
ESRI\Rail\RailLinks_polyline.shp
ESRI\Rail\RailLinks_polyline.shx
ESRI\Roads\GridOfColdStartEmissions2007_rectangle.dbf
ESRI\Roads\GridOfColdStartEmissions2007_rectangle.prj
ESRI\Roads\GridOfColdStartEmissions2007_rectangle.shp
ESRI\Roads\GridOfColdStartEmissions2007_rectangle.shx
ESRI\Roads\GridOfColdStartEmissions2007_region.dbf
ESRI\Roads\GridOfColdStartEmissions2007_region.prj
ESRI\Roads\GridOfColdStartEmissions2007_region.shp
ESRI\Roads\GridOfColdStartEmissions2007_region.shx
ESRI\Roads\GridOfHotSoakEmissions2007_rectangle.dbf
ESRI\Roads\GridOfHotSoakEmissions2007_rectangle.prj
ESRI\Roads\GridOfHotSoakEmissions2007_rectangle.shp
ESRI\Roads\GridOfHotSoakEmissions2007_rectangle.shx
ESRI\Roads\GridOfHotSoakEmissions2007_region.dbf
ESRI\Roads\GridOfHotSoakEmissions2007_region.prj
ESRI\Roads\GridOfHotSoakEmissions2007_region.shp
ESRI\Roads\GridOfHotSoakEmissions2007_region.shx
ESRI\Roads\GridOfMajorRoadEmissions2007_rectangle.dbf
ESRI\Roads\GridOfMajorRoadEmissions2007_rectangle.prj
ESRI\Roads\GridOfMajorRoadEmissions2007_rectangle.shp
ESRI\Roads\GridOfMajorRoadEmissions2007_rectangle.shx
ESRI\Roads\GridOfMajorRoadEmissions2007_region.dbf
ESRI\Roads\GridOfMajorRoadEmissions2007_region.prj
ESRI\Roads\GridOfMajorRoadEmissions2007_region.shp
ESRI\Roads\GridOfMajorRoadEmissions2007_region.shx
ESRI\Roads\GridOfMinorRoadEmissions2007_rectangle.dbf
ESRI\Roads\GridOfMinorRoadEmissions2007_rectangle.prj
ESRI\Roads\GridOfMinorRoadEmissions2007_rectangle.shp
ESRI\Roads\GridOfMinorRoadEmissions2007_rectangle.shx
ESRI\Roads\GridOfMinorRoadEmissions2007_region.dbf
ESRI\Roads\GridOfMinorRoadEmissions2007_region.prj
ESRI\Roads\GridOfMinorRoadEmissions2007_region.shp
ESRI\Roads\GridOfMinorRoadEmissions2007_region.shx
ESRI\Roads\MajorRoadsEmissions2007_polyline.dbf
ESRI\Roads\MajorRoadsEmissions2007_polyline.prj
ESRI\Roads\MajorRoadsEmissions2007_polyline.shp
ESRI\Roads\MajorRoadsEmissions2007_polyline.shx
ESRI\Roads\RoadTotal_rectangle.dbf
ESRI\Roads\RoadTotal_rectangle.prj

Associated Files
ESRI\Roads\RoadTotal_rectangle.shp
ESRI\Roads\RoadTotal rectangle.shx
ESRI\Roads\RoadTotal region.dbf
ESRI\Roads\RoadTotal region.prj
ESRI\Roads\RoadTotal_region.shp
ESRI\Roads\RoadTotal_region.shx
ESRI\Roads\ShapedMajorAWT2007_polyline.dbf
ESRI\Roads\ShapedMajorAWT2007_polyline.prj
ESRI\Roads\ShapedMajorAWT2007_polyline.shp
ESRI\Roads\ShapedMajorAWT2007_polyline.shx
ESRI\Totals\totalff_rectangle.dbf
ESRI\Totals\totalff_rectangle.prj
ESRI\Totals\totalff_rectangle.shp
ESRI\Totals\totalf_rectangle.shx
MapInfo\Airport\airport.DAT
MapInfo\Airport\airport.ID
MapInfo\Airport\airport.IND MapInfo\Airport\airport MAP
MapInfo\Airport\airport.MAP MapInfo\Airport\airport.TAB
<u> </u>
MapInfo\Airport\City Airport 2007 Data.xls
MapInfo\Airport\Manchester Airport 2007 Data.xls
MapInfo\area\other07.DAT
MapInfo\area\other07.ID
MapInfo\area\other07.IND
MapInfo\area\other07.MAP
MapInfo\area\other07.TAB
MapInfo\Bus stations\Bus Station Departures (Period 6 2008_9).xls
MapInfo\Bus stations\BusStationData2007.DAT
MapInfo\Bus stations\BusStationData2007.ID
MapInfo\Bus stations\BusStationData2007.MAP
MapInfo\Bus stations\BusStationData2007.TAB
MapInfo\Combustion\gas_com2007.DAT
MapInfo\Combustion\gas_com2007.ID
MapInfo\Combustion\gas_com2007.IND
MapInfo\Combustion\gas_com2007.MAP
MapInfo\Combustion\gas_com2007.TAB
MapInfo\Combustion\gas_dom2007.DAT
MapInfo\Combustion\gas_dom2007.DAT
MapInfo\Combustion\gas_dom2007.ID
<u> </u>
MapInfo\Combustion\gas_dom2007.MAP
MapInfo\Combustion\gas_dom2007.TAB
MapInfo\Combustion\oil_dom2007.DAT
MapInfo\Combustion\oil_dom2007.ID
MapInfo\Combustion\oil_dom2007.IND
MapInfo\Combustion\oil_dom2007.MAP
MapInfo\Combustion\oil_dom2007.TAB
MapInfo\Combustion\solidFuel_dom2007.DAT
MapInfo\Combustion\solidFuel_dom2007.ID
MapInfo\Combustion\solidFuel_dom2007.IND
<u> </u>
MapInfo\Combustion\solidFuel_dom2007.MAP
MapInfo\Combustion\solidFuel_dom2007.MAP MapInfo\Combustion\solidFuel_dom2007.TAB
MapInfo\Combustion\solidFuel_dom2007.MAP MapInfo\Combustion\solidFuel_dom2007.TAB MapInfo\Confidential - Point sources\boiler.csv
MapInfo\Combustion\solidFuel_dom2007.MAP MapInfo\Combustion\solidFuel_dom2007.TAB

Associated Files
MapInfo\Confidential - Point sources\boiler.TAB
MapInfo\Confidential - Point sources\parta.csv
MapInfo\Confidential - Point sources\parta.ID
MapInfo\Confidential - Point sources\parta.MAP
MapInfo\Confidential - Point sources\parta.TAB
MapInfo\Confidential - Point sources\partb.csv
MapInfo\Confidential - Point sources\partb.ID
MapInfo\Confidential - Point sources\partb.MAP
MapInfo\Confidential - Point sources\partb.TAB
MapInfo\Confidential - Point sources\petrol.csv
MapInfo\Confidential - Point sources\petrol.ID
MapInfo\Confidential - Point sources\petrol.MAP
MapInfo\Confidential - Point sources\petrol.TAB
MapInfo\Confidential - Point sources\ReadMe.txt
MapInfo\Electricity\Electricity2007.DAT
MapInfo\Electricity\Electricity2007.ID
MapInfo\Electricity\Electricity2007.IND
MapInfo\Electricity\Electricity2007.MAP
MapInfo\Electricity\Electricity2007.TAB
MapInfo\Rail\RailLinks.DAT
MapInfo\Rail\RailLinks.ID
MapInfo\Rail\RailLinks.IND
MapInfo\Rail\RailLinks.MAP
MapInfo\Rail\RailLinks.TAB
MapInfo\Roads\GridOfColdStartEmissions2007.DAT
MapInfo\Roads\GridOfColdStartEmissions2007.ID
MapInfo\Roads\GridOfColdStartEmissions2007.IND
MapInfo\Roads\GridOfColdStartEmissions2007.MAP
MapInfo\Roads\GridOfColdStartEmissions2007.TAB
MapInfo\Roads\GridOfHotSoakEmissions2007.DAT
MapInfo\Roads\GridOfHotSoakEmissions2007.ID
MapInfo\Roads\GridOfHotSoakEmissions2007.IND
MapInfo\Roads\GridOfHotSoakEmissions2007.MAP
MapInfo\Roads\GridOfHotSoakEmissions2007.TAB
MapInfo\Roads\GridOfMajorRoadEmissions2007.DAT
MapInfo\Roads\GridOfMajorRoadEmissions2007.ID
MapInfo\Roads\GridOfMajorRoadEmissions2007.IND
MapInfo\Roads\GridOfMajorRoadEmissions2007.MAP
MapInfo\Roads\GridOfMajorRoadEmissions2007.TAB
MapInfo\Roads\GridOfMinorRoadEmissions2007.DAT
MapInfo\Roads\GridOfMinorRoadEmissions2007.ID
MapInfo\Roads\GridOfMinorRoadEmissions2007.IND
MapInfo\Roads\GridOfMinorRoadEmissions2007.MAP
MapInfo\Roads\GridOfMinorRoadEmissions2007.TAB
MapInfo\Roads\MajorRoadsEmissions2007.DAT
MapInfo\Roads\MajorRoadsEmissions2007.ID
MapInfo\Roads\MajorRoadsEmissions2007.IND
MapInfo\Roads\MajorRoadsEmissions2007.MAP
MapInfo\Roads\MajorRoadsEmissions2007.TAB
MapInfo\Roads\RoadTotal.DAT
MapInfo\Roads\RoadTotal.ID
MapInfo\Roads\RoadTotal.IND
MapInfo\Roads\RoadTotal.MAP
MapInfo\Roads\RoadTotal.TAB
· P

Associated Files
MapInfo\Roads\ShapedMajorAWT2007.DAT
MapInfo\Roads\ShapedMajorAWT2007.ID
MapInfo\Roads\ShapedMajorAWT2007.MAP
MapInfo\Roads\ShapedMajorAWT2007.TAB
MapInfo\Totals\totalff.DAT

Associated Files
MapInfo\Totals\totalff.ID
MapInfo\Totals\totalff.IND
MapInfo\Totals\totalff.MAP
MapInfo\Totals\totalff.TAB

Appendix 8 Sample from the Emission Factor Handbook and Workbook

The following pages give a sample Excel Template workbook and the corresponding pages from the EMIGMA Industrial Air Pollutant Emissions Sources Emission Factor Handbook (Reference 19).

SECTION A - OPERATOR DETAILS AND RESULTS Please refer to Chapter 6 of the Emigma Emission Factor Handbook and use the checklist provider PG Note PG2/3 SNAP Process Electrical, Crucible and Reverberatory Furnaces EMIGMA ID Date Updated 01/01/2007 I Hull Name A N Other Operator Name Authority Manchester Address A N Other, 1 Any Street, Manchester M1 1AA Postcode 123456 123456 x-coordinate y-coordinate Results - Annual Emissions (t Emissions Estimate 0.E+00 4.E+00 1.E-02 2.E+00 6.E-03 2.E-01 1.E-01 7.E-05 7.E-03 2.E-01 1.E-02 0.E+00 0.E+00 The data are rated as follows: from Section B Emission Factor Rating C 3.00 Monitoring Results 0.E+00 Data Quality Rating: 4.00 from Section C

1.E-02 2.E+00 6.E-03 2.E-01 1.E-01 7.E-05 7.E-03 2.E-01 1.E-02 0.E+00 0.E+00

Overall Rating:

7.00

Values Used

0.E+00

								ulate annual			g								
ou wish to use m	onitoring results	as the annual	emissions	estimate?	If in doubt	t, select "N	o".	Į.	No										
						Emissio	n Rate (g/	s)						<u> </u>					
Stack ID	Black Smoke	CO2 as C	CH4	со	NO	NO2	S 02	NMVOC	Hg	Pb	Benzen e	PM10	B[a]P	Hour of Operation per Year	Height (m)	Diameter (m)	Volumetric Flow (m3/s)	Temperature (K)	Data OK?
																			NO
																			NO
																			NO
																			NO
																			NO
																			NO
																			NO
																			NO
																			NO
	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00						NO

6 PG 2/03 ELECTRICAL, CRUCIBLE AND REVERBERATORY FURNACES

PG2/03

Electrical, Crucible and Reverberatory

Furnaces

PPC SECTOR: 2.2

SNAP CODE: 030302

6.1 Activities included

This chapter refers to emissions from electric arc (under 7 tonnes), induction, crucible, resistance and reverberatory furnaces in which iron, steel or ferrous alloys are melted, refined, held or poured. This chapter also covers the melting of nickel and cobalt alloys, except for nickel alloy processes with a furnace, bath or vessel with a designed holding capacity of 5 tonnes or more.

This chapter also covers emissions from the pouring of metal into a ladle and metal treatments undertaken in the furnace or ladle. These treatments include nodularisation with magnesium to produce ductile iron and carburisation using a carbon source.

Refining ladles are refractory lined containers specially designed for treating the molten metal outside the melting furnace. They can be equipped with a heating system (electric arc or induction).

Nodularisation is the addition to the melt of an alloy containing magnesium. It produces a ductile iron by promoting the formation of graphite in the nodular or spheroidal form. White magnesium oxide fume is produced. There is a choice of techniques which should meet the emission requirements depending upon the process specific circumstances; they include:

- i) a Tundish cover for the ladle.
- ii) use of totally enclosed flow through treatment boxes.
- iii) magnesium addition in the mould.
- iv) use of magnesium containing wire feed process.
- v) collection of the emission followed by arrestment in a bag filtration system.

6.2 Emissions

The key emissions from these processes that constitute pollution for the purposes of the Pollution Prevention and Control Regulations 2000 are those consisting of particulate matter, metallurgical fume and products of combustion.

Particulate Matter

The following parts of the process may give rise to particulate matter in the form of dust:

- Transfer of potentially dusty materials including charge material.
- Handling of dross and ash in non ferrous processes.
- Furnace charging and tapping operations.

Other pollutants

The following parts of the process may give rise to other pollutants:

- Charging, melting, metal treatment and pouring may give rise to metallurgical fume emissions.
- Smoke arises in the event of poor (or incomplete) combustion.
- Smoke may arise from contaminants such as oil or paint burning off the scrap.

6.3 **Emission Factor**

Source of

UK National Atmospheric Emissions Inventory

Emission Factor:

Emission Factor

"Iron and Steel (Electric Arc Furnaces)"

Description:

Used:

This emission factor covers emissions of by-products of combustion due

to oxidation of organic matter in scrap material fed to electric arc

furnaces.

Units:

Kilotonne of pollutant / Mt material produced

Note:

There are separate PG notes which cover hot and cold blast cupolas and rotary furnaces (PG2/5), and zinc and zinc alloy processes (PG2/7). There are separate chapters which cover casting, grinding and fettling, finishing and other foundry operations. See Table 6.2Error! Reference source not found.. IF THE PROCESS IS COVERED BY 2 OR MORE PG NOTES ENSURE AN EMIGMA SPREADSHEET IS COMPLETED

FOR EACH NOTE.

Table 6.1 Emission Factors Electrical, crucible and reverberatory furnaces Emission factors are expressed as kilotonne of pollutant/Mt material produced)

Pollutant	CO ₂ as C	CH₄	со	NO	NO ₂	SO ₂	NMVOC	Hg	Pb	Benzene
Factor	3.6	0.01	1.25	0.005	0.2	0.09	0.0000553	0.00587	0.16	0.01

Table 6.2 Chapter References

PG Note	Title	Refer to Chapter
PG2/4	Iron, Steel and Non-Ferrous Metal Foundry Processes	7
PG2/6a	Processes Melting and Producing Aluminium and its Alloys	8
PG2/6b	Processes Melting and Producing Magnesium and its Alloys	9
PG2/8	Copper and Copper Alloy Processes	10

6.4 Emission Factor Rating

The emission factor rating for PG2/3 Electrical, crucible and reverberatory furnaces is C.

6.5 Weakest Aspects/Priority Areas For Improvement In Current Methodology

Emission Factor/s

The NAEI has not provided information on how the emission factors for Iron and Steel (Electric Arc Furnaces) have been derived.

EMIGMA

Historically data entered in EMIGMA did not differentiate between raw material and material produced. Data entered must relate to the amount of metal melted per annum.

6.6 Checklist

The checklist in Appendix 1 should be used in conjunction with the information in this chapter to ensure that data is entered correctly into EMIGMA.

Authors	Ian Hull, Tony Morris, Kate Fra	Ian Hull, Tony Morris, Kate Fraser, Ian Hagyard					
Contact	Email	Telephone					
Ian Hull	ian.hull@tfgm.com	0161 244 1454					

Version	Change	Reason for Change	Date
0.1	Draft		October 2011
0.2		Proof reading amendments and formatting changes	10/11/2011
0.3		Further proof reading changes	11/11/2011
0.4		Amendments to SATURN model section	21/11/2011
0.5		Correction of network mileage covered by counts	24/11/2011
1.0	Version 1	Table 4.4 inserted	21/12/2011